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Introduction

We explore the effectiveness of random projections in the context of convolutional neural networks
(CNNs). Several works have shown that randomness can speed computation while preserving
competitive accuracy to state of the art ML models in applied contexts. Here, we consider CNNs
with kernels sampled from a distribution on the training data. A random projection into a
lower dimensional space is obtained from one forward pass of a CNN. Rather than optimizing
the kernels, we optimize only the weights of the random convolutional features obtained. We
show that training a shallow architecture by randomly fixing the nonlinearities in the first layer
results in a classifier that is comparable to one constructed by optimizing said nonlinearities in
an analogous architecture. Our results follow from theory developed by Rahimi and Recht [1].

Theoretical Observations

Consider functions of the form f(x fQ ¢(x; w)dw with z € X, ¢ a nonlinear activation
function, a scalar weights, and deﬁne the norm on a probability dlstrlbutlon p on the parameter

space €2 as follows: ||f||, = sup| << >>| and let
wes)

Fy= (/) = | at)olaiw)ds: 1] < )

Theorem 1. Let 1 be any measure on X and fix f* € Fy. Draw wy, ... ,wg i.i.d from p(w).

ag st f(z) = Y apdlr : wy
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where || fllu = [y f(z)p(dz)

Then with probability at least 1 — 0, there exists oy, . ..
satisfies

Remark 1: F) is a very rich space of functions.
e I is dense in a Reproducing Kernel Hilbert Space H which is dense in the space of continuous
functions.

e Rate of convergence depends on both K (number of random bases) and probability distribu-
tion p on §).

Now consider the problem of fitting a function f : X — R to a training dataset .S of size IV:

{x;, yz}N ; sampled 1.1.d. from an unknown probability distribution P y. We want to find j that
minimizes the empirical risk with respect to some cost function c:
| N
Remp[f] = N Z C(f(xz)a yz)
1=1
When f is of the weighted sum form above, and rather than minimizing over wy,...,wx € )
and aq,...,ax € R we can sample {wz}fi ; 1.i.d. from p to obtain the following minimization

problem:

f= min Remp Zgbaz wr.) o]

aERE

Theorem 2. With probability 1 — 20, we have the following difference in true risk

w5 (o)

Remark 2: Distance between model and optimal map decays as K gets larger

e Number of random features, K, is directly proportional to how well model approximates the
risk minimizer.

e The decay rate is of the same order as when optimizing both w’s and a’s: O(C'/K) for some
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Plan: Adapt theory to the context of image classification with CNNs.

e A convolutional neural network (CNN) is a type of neural network often used for image clas-
sification consisting of one or more convolutional layers.

e In these layers, each image is convolved with several filters which are optimized via backprop-
agation and gradient descent.

e Instead of optimizing the filters, we sample subimages from the data and fix them as our
kernels. We modify the framework in [2] by randomizing patch sizes.
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Connecting the experimental framework to the theory, we have

e A Our input = being a set of N images {I g}é\f: , of My x My pixels drawn i.1.d. from some
distribution P .

e B Given a large sample of NV images, we randomly draw K patches of varying random size
mp. X my. (such that my < M,Vk € [K]) from a distribution p on all subimages of {1 g}é\f: |
(our restricted parameter space (), to obtain a patch dictionary {Pk}é(zl which serves as our
Wi, ... WK

e C These K random patches P, are then convolved with each image in the dataset {1 g}é\]: |-

e D The outputs of these convolutions are then passed through a nonlinear activation function
¢<[g * Pk) — RGLU([g * Pk) — max([g * P/@? O)

e E The random featurization is obtained by aggregating over all entries of the activation maps

generated in D:
M M’

(Z¢) M,ZZ¢ Iy * Pp)li, ]

1=1 g=1

Note on Dimensionality and Generality
e Because a convolution operation is an inner product, the map x(Iy) can be interpreted as a
random projection of an image from an M x M dimensional space to a K-dimensional space.

e The random feature vectors are generated in an unsupervised manner and thus can be used
as input into a simple linear classification model with labels appended, where we can learn
the scalar weights « for various tasks.

Random Convolutional Features

Algorithm 1: Ablated CNN for multitask classification

Input: Image data S = {x ...z}, probability distribution p on €2 (subimages of S,
integer K, feature function ¢, probability distribution g on viable patch sizes, integer D,
set of labels for D tasks {y; 4},i=1,...,N,d=1,...,D.

Output: D classification models f,(z) = 25:1 (1, w)a(w)

Draw patches wq,...,wy i.i.d. from p on {2 with sizes depending on discrete measure pu.
Featurize data: ¢(x1;w),...,¢(xN;w) to obtain N x K feature matrix.

Append labels ¢4 and learn o to yield output with low loss.

Random Convolutional Features and Patch-Based Learning

Experimental Results

Experiments on MNIST and CIFAR10 Datasets

Varying Number of Random Patches or Filters K:

Random Convolutional Features (RCFs) vs Shallow CNNs

80 | —e— Shallow CNN on CIFAR10

%
-
-
-
-
-
-
-
-
-
-
-

701

-
-
-
-
-
-
-
-
-
-

60

cy (%)

50

Accura

401

301

201

e Compared random patch-based method with a shallow CNN of analogous architecture (i.e.,
one convolutional layer with K filters and one fully connected layer)

e Random features outperform shallow CNNs. Random feature generation and inference is
10-50 times faster than optimization/training of shallow CNN.

Multitask Observations on MINIST

e Since random featurization is a task-agnostic/label-independent /unsupervised method, the
outputs should be able to maintain predictive value for several different tasks.

e RCF's have an advantage over CNNs in that the patches do not get optimized for a specific
task, saving time from having to retrain the model.

Task CNN Acc | RCF Acc | CNN Train Time (s) RCF Gen Time (K=400) RCF Train Time (s)
Standard Digits 51.2% 79.1% 583 66.5s 65.8s
Parity 68.4% 89.7% 640 66.5s 42.4s
Primality 60.4% 92.3% 787 66.5s 66.9s
mod3 81.2% 96.1% 827 66.5s 63.3s
mod4 17.4% 97.2% 830 66.5s 52.9s
loop detection 66.9% 88.36% 965 66.5s 74.2s
0-4 or 5-9 79.1% 78.1% 654. 66.5s 60.2s
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label O label O
label 1 1.75 1 label 1
3.0 7 label 2 label 2
label 3 1.50 label 3
2.5 label 4 label 4
label 5 1.5 - label 5
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Histograms of one dimenstonal random projections of MNIST image data with a random
patch (left) and a filter from the fifth training epoch of a shallow CNN (right).
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