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1 Introduction

We explore the effectiveness of random projections in the context of convolutional neural networks
(CNNs). Several works have shown that randomness can speed computation while preserving
competitive accuracy to state of the art ML models in applied contexts. Here, we consider CNNs
with kernels sampled from a distribution on the training data. A random projection into a
lower dimensional space is obtained from one forward pass of a CNN. Rather than optimizing
the kernels, we optimize only the weights of the random convolutional features obtained. We
show that training a shallow architecture by randomly fixing the nonlinearities in the first layer
results in a classifier that is comparable to one constructed by optimizing said nonlinearities in
an analogous architecture. Our results follow from theory developed by Rahimi and Recht [1].

2 Theoretical Observations

Consider functions of the form f (x) =
∫
Ωα(ω)ϕ(x;ω)dω with x ∈ X , ϕ a nonlinear activation

function, α scalar weights, and define the norm on a probability distribution p on the parameter

space Ω as follows: ∥f∥p = sup
ω∈Ω

|α(ω)|
p(ω)

and let

Fp ≡ {f (x) =
∫
Ω
α(ω)ϕ(x;ω)dω : ∥f∥p < ∞}

Theorem 1.Let µ be any measure on X and fix f∗ ∈ Fp. Draw ω1, . . . , ωK i.i.d from p(ω).

Then with probability at least 1 − δ, there exists α1, . . . , αK s.t. f̂ (x) =
∑K

k=1αkϕ[x : ωk]
satisfies

∥f̂K − f∗∥µ ≤ O
(
∥f∥p√
K

√
log(

1

δ
))

)
where ∥f∥µ =

∫
X f (x)µ(dx)

Remark 1: Fp is a very rich space of functions.

• Fp is dense in a Reproducing Kernel Hilbert SpaceH which is dense in the space of continuous
functions.

•Rate of convergence depends on both K (number of random bases) and probability distribu-
tion p on Ω.

Now consider the problem of fitting a function f : X → R to a training dataset S of size N :
{xi, yi}Ni=1 sampled i.i.d. from an unknown probability distribution PX . We want to find f that
minimizes the empirical risk with respect to some cost function c:

Remp[f ] ≡
1

N

N∑
i=1

c(f (xi), yi)

When f is of the weighted sum form above, and rather than minimizing over ω1, . . . , ωK ∈ Ω
and α1, . . . , αK ∈ R we can sample {ωi}Ki=1 i.i.d. from p to obtain the following minimization
problem:

f̂ = min
α∈RK

Remp[

K∑
k=1

ϕ(x : ωk)αk]

Theorem 2.With probability 1− 2δ, we have the following difference in true risk

R[f̂ ]−minR[f ]
f∈Fp

≤ O
((

1√
N

+
1√
K

)
log(

1

δ
)

)

Remark 2: Distance between model and optimal map decays as K gets larger

•Number of random features, K, is directly proportional to how well model approximates the
risk minimizer.

• The decay rate is of the same order as when optimizing both ω’s and α’s: O(C/K) for some
constant C.

3 Methods

Plan: Adapt theory to the context of image classification with CNNs.

•A convolutional neural network (CNN) is a type of neural network often used for image clas-
sification consisting of one or more convolutional layers.

• In these layers, each image is convolved with several filters which are optimized via backprop-
agation and gradient descent.

• Instead of optimizing the filters, we sample subimages from the data and fix them as our
kernels. We modify the framework in [2] by randomizing patch sizes.
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Supplementary Figure 5: MOSAIKS process from featurization to multi-task prediction.
Given a large sample of N satellite images (A), a random sample of K patches (B) are drawn.
(C) These K random patches Pk are convolved over each image I` and (D) passed through a
nonlinear function �(·) = ReLU(·) to generate K activation maps. (E) Pixel-specific activa-
tions are pooled across each image to generate one set of N ⇥ K features that are stored and
distributed to all users. (F) The same random feature vector x is used in cross-validated ridge
regression across many distinct tasks, after labeled and geo-referenced data y` is matched to
features from each image I` (as shown in Figure 1B of the main text). (G) Models trained via
ridge regression can be used to generate predictions across unrestricted tasks for any location
with satellite imagery (icons indicate different tasks).

Connection to the kitchen sinks framework The random kitchen sink featurization used in

MOSAIKS relies on a nonlinear mapping g(z;⇥k), where z is an input variable and ⇥k is a

randomly drawn vector. Here, we describe the implementation details of this featurization in

the context of satellite imagery. Connecting our implementation and notation to the framework

of random kitchen sinks, the random variables ⇥k are instantiated as the values of a random

patch Pk and the bias bk. The input variable z is an image I`, and g(z;⇥k) represents the

convolution of the patch over the image, followed by addition of the bias bk and application of

a element-wise ReLU function and an average pool, as described in the Methods of the main

article and detailed below.

Methodological Details Supplementary Figure 5 depicts our featurization process. As de-

scribed in Notes 1.1 and 2.1, we begin with two sets (uniform and population-weighted samples)

of N = 100, 000 satellite images, each of which measures 640 ⇥ 640 ⇥ 3 pixels (the third di-
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Connecting the experimental framework to the theory, we have

•A Our input x being a set of N images {Iℓ}Nℓ=1 of Mℓ × Mℓ pixels drawn i.i.d. from some
distribution PX .

•B Given a large sample of N images, we randomly draw K patches of varying random size
mk ×mk (such that mk ≤ M, ∀k ∈ [K]) from a distribution p on all subimages of {Iℓ}Nℓ=1
(our restricted parameter space Ω), to obtain a patch dictionary {Pk}Kk=1 which serves as our
ω1, . . . ωK .

•C These K random patches Pk are then convolved with each image in the dataset {Iℓ}Nℓ=1.
•D The outputs of these convolutions are then passed through a nonlinear activation function
ϕ(Iℓ ∗ Pk) = ReLU(Iℓ ∗ Pk) = max(Iℓ ∗ Pk, 0)

•E The random featurization is obtained by aggregating over all entries of the activation maps
generated in D:

xk(Iℓ) =
1

M ′

M ′∑
i=1

M ′∑
j=1

ϕ(Iℓ ∗ Pk)[i, j]

Note on Dimensionality and Generality

• Because a convolution operation is an inner product, the map x(Iℓ) can be interpreted as a
random projection of an image from an M ×M dimensional space to a K-dimensional space.

• The random feature vectors are generated in an unsupervised manner and thus can be used
as input into a simple linear classification model with labels appended, where we can learn
the scalar weights α for various tasks.

Random Convolutional Features

Algorithm 1: Ablated CNN for multitask classification
Input: Image data S = {x1 . . . xN}, probability distribution p on Ω (subimages of S),
integer K, feature function ϕ, probability distribution µ on viable patch sizes, integer D,
set of labels for D tasks {yi,d}, i = 1, . . . , N, d = 1, . . . , D.

Output: D classification models f̂d(x) =
∑K

k=1 ϕ(x;ω)α(ω)
Draw patches ω1, . . . , ωK i.i.d. from p on Ω with sizes depending on discrete measure µ.
Featurize data: ϕ(x1;ω), . . . , ϕ(xN ;ω) to obtain N ×K feature matrix.
Append labels yd and learn αd to yield output with low loss.

4 Experimental Results

Experiments on MNIST and CIFAR10 Datasets

Varying Number of Random Patches or Filters K:

• Compared random patch-based method with a shallow CNN of analogous architecture (i.e.,
one convolutional layer with K filters and one fully connected layer)

•Random features outperform shallow CNNs. Random feature generation and inference is
10-50 times faster than optimization/training of shallow CNN.

Multitask Observations on MNIST

• Since random featurization is a task-agnostic/label-independent/unsupervised method, the
outputs should be able to maintain predictive value for several different tasks.

•RCFs have an advantage over CNNs in that the patches do not get optimized for a specific
task, saving time from having to retrain the model.

Histograms of one dimensional random projections of MNIST image data with a random
patch (left) and a filter from the fifth training epoch of a shallow CNN (right).
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