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1 Introduction

In this report, we will be constructing a square trampoline grid and simulating various
kinematic trajectories regarding its interactions with spherical ball. The structure of the
trampoline will be generated by adapting equations for an arbitrary network of nodes
connected by springs equipped with dash-pots. The interactions between objects will be
governed by Newtonian mechanics. In this report, we exclude considerations of spin, so
the interactions between the ball and the trampoline are frictionless. Several variations of
this system will be considered, beginning from a simple, flat trampoline with a ball being
dropped from rest and advancing to a system of several trampolines rotated at various
angles with a ball interacting between them.

2 Equations

2.1 Network of Linear Springs in 3D

First, let us consider an arbitrary three dimensional network of nodes linked with linear
springs that are equipped with dampers. The goal is to use this general framework to
build a realistic trampoline in the following subsection. [1]

Figure 1: Schematic of two arbitrary nodes j and k connected by a linear spring equipped
with a dashpot

A spring is defined as something where the force depends on length. A linear spring
between j and k has a rest length R0

jk, a stiffness Sjk, and a damping constant Djk.
Here, j and k are nodes with respective masses. This rest length is the distance between
the two nodes that results in zero spring force between them. If we stretch or compress
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the spring so that the nodes they connect are a length away from each other that is not
equal to the rest length, then the stiffness gives information on how much the spring
force between them changes. The dash-pot that each spring is equipped with is
essentially a shock absorber that exerts a force in the opposite direction of velocity,
slowing the motion and absorbing energy, to ensure that the spring does not oscillate
forever. The magnitude of this effect is related to Djk. From Newton’s Second Law,
F = mak, where m is mass and ak is acceleration of node k, we can derive the following
relationship for the total link force on node k within the spring network:

Fl,k = Mk
dUk

dt
=

∑
j∈N(k)

Tjk
Xj −Xk

||Xj −Xk||
(1)

where

Uk =
dXk

dt
(2)

Tjk = Sjk(||Xj −Xk|| −R0
jk) +Djk

d

dt
||Xj −Xk|| (3)

In (1), Mk is the mass of node k, Tjk is the tension in the spring connecting nodes j and
k, and Xj is the position vector corresponding to node j. Therefore, Xj −Xk is the
vector that points from node k to j, and ||Xj −Xk|| is the length of such vector. So
Xj−Xk

||Xj−Xk||
is a unit vector pointing from node k to j. The change in velocity over change

in time is defined as acceleration, ak = dUk

dt
. In essence, the force on k, Fk = Mkak, is

equal to the sum of the tension forces in the direction j to k for all j in the set of
neighboring nodes that k is connected to, denoted as N(k). The spring and the dashpot
both work together to create tension. The stiffness of the spring contributes to the
tension when there is a deviation from the rest length Sjk(||Xj −Xk|| −R0

jk), and the
damping constant of the dashpot contributes to the tension when there is any change in
the distance between the nodes, d

dt
||Xj −Xk||, or in other words, if there is any nonzero

velocity of the spring, since:

d

dt
||Xj −Xk|| =

Xj −Xk

||Xj −Xk||
· (Uj −Uk) (4)

The state of an arbitrary network of springs is the position and the velocity of every
node. The above formulations thus describe an equation for the rate of change of the
state as a function of the state itself. Therefore, as long as we know the initial position
and velocity of each node, we can solve the ordinary differential equations (1) and (2) to
simulate the movement of the nodes over time.

2.2 Construction of Trampoline Geometry

To construct the trampoline structure, we arrange the nodes in such a way that they
become a uniformly spaced square grid connected with horizontal and vertical links at
time t=0.
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Figure 2: 9 by 9 grid of nodes

We assume that all nodes have the same mass and that each link between them has the
same stiffness, damping constant, and rest length. To mimic a trampoline surface, we set
the rest length for all links to be smaller than the distance between adjacent nodes on
the grid plane at t = 0. The nodes on the boundaries are taken to be fixed in space and
we release the interior nodes from rest and the force of gravity is applied on each node k:

Fg,k = −Mkgk̂ (5)

where g is the gravitational acceleration constant and k̂ is the unit vector in the z
direction.

2.3 Modeling 3D Sphere interaction

To model a ball bouncing on a trampoline, consider a sphere with a center location C
and a radius R in R3. Let all of its mass, Mball, be concentrated at the center so that it
is essentially a point mass with a specified radius. An important assumption made here
is that the ball is frictionless, meaning it does not spin. Now, there are two instances
that we need to consider for the ball: the case where it is above the trampoline and the
case where it is in contact with the trampoline. When the ball is not in contact with the
trampoline, the only force acting on it is gravity:

Fg,ball = −Mballgk̂ (6)

When the ball is in contact with the nodes of the trampoline, this means that there are
a nonzero number of nodes that are within distance R of the center of mass of the ball,
C. The ball is exerting a force Fball,i onto each node i in this cohort of nodes inside the
radius of the ball at time t, B(t), and by Newton’s third law, each node i ∈ B(t) is
exerting an equal and opposite force back onto the center of mass of the sphere, Fi,ball.
This interaction between the center of mass of the sphere and the node is spring-like,
where the rest length is the radius R and the stiffness of the spring is Kball.
This particular spring-like interaction does not feel any effects when the spring is
”stretched” (i.e. ||Xi −C|| ≥ R), however, it does feel the effects when the spring is
compressed and ||Xi−C|| < R. The following equations reiterate the ideas stated above:

Fball,i = Kball(R− ||Xi −C||) · Xi −C

||Xi −C||
(7)

Fi,ball = −Fball,i (8)
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Figure 3: 2D cross sectional schematic of ball contacting the trampoline (node k is within
radius distance from the center of the point mass of the ball).

The resultant vector from the sum of these equal and opposite forces acting on the ball
from the nodes can be approximated to be pointing in the normal direction when we
take n to be large. Thus the normal force exerted on the ball by the trampoline is:

FNormal =
∑

i∈B(t)

Fi,ball (9)

Of course, when the nodes are exerting a force on the ball, gravity is still in effect, so the
total force on the ball at any point in time is as follows:

Fball = Fg,ball + Fi,ball (10)

Note that when B = ∅, then Fi,ball = 0. The movement of the ball can be modeled by
the following ODEs:

Fball =Mball
dUball

dt
(11)

Uball =
dC

dt
(12)

3 Numerical Methods

To solve the ODEs in (1) and (2), we replace the time derivatives with discretized
difference quotients regarding the next time step. This is called forward Euler’s method:

Mk
Uk(t+ ∆t)−Uk(t)

∆t
=

∑
j∈N(k)

Tjk(t)
Xj(t)−Xk(t)

||Xj(t)−Xk(t)||
(13)

Xk(t+ ∆t)−Xk(t)

∆t
= Uk(t+ ∆t) (14)
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We solve the ODEs in (11) and (12) in the same way:

Mball
Uball(t+ ∆t)−Uball(t)

∆t
= −

∑
i∈B

Kball(R− ||Xi(t)−C(t)||) · Xi(t)−C(t)

||Xi(t)−C(t)||
−Mballgk̂

(15)

C(t+ ∆t)−C(t)

∆t
= Uball(t+ ∆t) (16)

This is actually a slight improvement from Euler’s method. In Euler’s method, in
equations (14) and (16) we would have Uball and Uk be evaluated at the previous time
step, t, but since we know its value at t+ ∆t, which is the next time step, our
approximation is slightly more accurate.

4 Implementation in MATLAB

There are various programs involved in this simulation. We have a function to construct
the trampoline, a function to compute the distance between the ball and every node on
the trampoline, and a driver script from which we run the simulation. The following
subsections outline in detail how these programs work.

4.1 plotTram.m

The plotTram.m function builds the trampoline. As input, we need parameters n and a,
where n is the number of nodes on one side of the trampoline and a is the distance
between adjacent nodes at time t = 0. Also, the function takes in a rotation angle θ and
a 1× 3 translation matrix. These two parameters allow user to rotate the trampoline
around x axis by initializing an angle in the driver script trampoline.m.

With these inputs, the function returns the location matrix, X, of each node, link matrix
jj, kk and a matrix of all nodes that we want to fix, called fixed. The link table jj is a
matrix that stores the node on one end of each link, while kk stores the other end. For
example, jj(first link) = first node, and kk(first link) = second node, etc.
In terms of the dimensions of each output, X is a N × 3 matrix, where N is the total
number of nodes and 3 stands for x, y, z coordinates. fixed has dimension N × 1, and
each value is 1 if the node is fixed, 0 if it can move. One thing that we should keep in
mind is that, we enumerate the nodes from 1 to N . For every matrix that describes the
nodes, the n-th index coresponds to node n.
Constructing the link table jj and kk is straightforward, so we make an intermediate
matrix NB that memorizes what neighbours each node has. The number of neighbours
depends on how we construct the trampoline, in our simulation, links only come in
vertical and horizontal directions, that is to say, the interior nodes will have 4
neighbours. Therefore, NB is a N × 4 matrix. In order to specify the neighbours of each
node, we use the following nested loop to visit every node and set conditions for the
boundary nodes that have fewer neighbours.
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1 nb = zeros(N, 4);
2 for iy = 1:n
3 for ix = 1:n
4 idx = ix + n * (iy-1);
5 if ix > 1; nb(idx,1) = idx - 1; end%if the node is left-most, ...

it does not have left neighbour
6 if ix < n; nb(idx,2) = idx + 1; end%right-most nodes don't ...

have right neighbour.
7 if iy > 1; nb(idx,3) = idx - n; end
8 if iy < n; nb(idx,4) = idx + n; end
9 end

10 end

With the help of this neighbour matrix, it will be convenient to build up the link tables
jj and kk. Link tables are 2NN × 1 matrix where NN is the total number of links. The
following code reshapes NB into jj and kk.

1 jj = []; kk = [];
2 for link = 1:size(nb,2) %size(nb,2) is the number of neighbour each ...

node has
3 inds = (nb(:,link) > 0);
4 jj = [jj;nodes(inds)]; %The neighbours of a node are some ends of ...

some links.
5 kk = [kk;nb(inds,link)];
6 %we actually count each link twice.
7 end

The reason why we doubled NN is that when we loop through the neighours, for
example, if one end of a link P is ak and the other end is B, P will be counted when we
find out B is a neighbour of ak, and it will be counted again when we find out ak is a
neighbour of B. To solve this problem, we just need to divide the real stiffness by 2
when we calculate the link force.

4.2 testradius.m

This function is very crucial when the the ball interacts with the trampoline. As we can
infer from its name, the function determines which nods are inside the radius of the ball.
The result is a logical matrix, namely in out, whose dimension is N × 1. Each node will
have value logical 1 if its distance to C is less or equal to the radius R. Testradius.m
also returns the vector between C the node that is within R. These vectors are
important for calculating our imaginary spring force of the ball.

4.3 trampoline.m

With these two function, we are good to go. We are quite ambitious about our project,
so we are not satisfied with only one trampoline. The code has been highly modularized,
and it allows us to build several trampolines that rotate in different angles and can be
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translated to different position. The following set up reads in as many trampolines as we
want.

1 num tram = 4; %number of trampolines
2 kmax = nˆ2; %size of X
3 lmax = 4 * n * (n-1); %size of jj: (twice as many as the total links)
4 thetax = [0 -pi/4 +pi/6 -pi/4]; %angle of rotation
5 mtrans = [0 0 0;
6 0 -6 4;
7 0 -6 -15;
8 0 +6 -15];// each row correspond to the translation matrix ...

of a trampoline.
9 %-----------------preallocate everything-----------------

10 N0 = zeros(1,num tram); //
11 NN0 = zeros (1,num tram);
12 X0 = zeros(kmax, 3, num tram );
13 jj0 = zeros(lmax, 1, num tram);
14 kk0 = zeros(lmax, 1, num tram);
15 fixed0 = zeros(kmax, 1, num tram );
16 U0 = zeros(kmax,3,num tram); %preallocate velocity of trampoline nodes
17 % These are array of matrices that we can read and edit.
18

19 %-------------------trampoline mega loop ------------------------
20 for i = 1:num tram
21 thetax temp = thetax(i);
22 mtrans temp = mtrans(i,:);
23 [N temp,NN temp,X temp,jj temp,kk temp,fixed temp] = ...

plotTram(n,a,thetax temp,mtrans temp);%build the structure
24 N0(i) = N temp;
25 NN0(i) = NN temp;
26 X0(:,:,i) = X temp;
27 jj0(:,:,i) = jj temp;
28 kk0(:,:,i) = kk temp;
29 fixed0(:,:,i) = fixed temp;
30 end

After this mega preallocation, we set up some global variables such as gravity, stiffness
and damping constant. We also need to set up the time step and maximal time for our
forward Euler’s method. In our simulation with relatively small trampolines, dt = 0.001
will be small enough to perform a beautiful bouncing ball. We also need to initialize the
the properties of the ball. Especially, we need to set up a proper value for the imaginary
stiffness of the ball. According to our test results, we find that it will be appreciate to
establish a linear relation between the mass of the ball and the imaginary stiffness.
Therefore we set

Kimaginary = Mball × 105.

Within each time step, we need to loop through every trampoline, then:

1. Read data from the big arrays of matrix.
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2. Calculate link vectors, link length, link tension. Recall that we need to divide the
Stiffness by 2 here to cancel the effect of counting links twice.

1 T = (S/2).*(R-R0) + (D./R).*sum(DX.*DU,2); %S for ...
stiffness, R-R0 for length difference, D for damping ...
constant, DX for link vector and DU for velocity ...
difference.

3. Calculate forces:

(a) link force:

1 % For each link, add its force with correct sign
2 % to the point at each end of the link:
3 for link=1:NN
4 F(kk(link),:) = F(kk(link),:) + FF(link,:);
5 F(jj(link),:) = F(jj(link),:) - FF(link,:);
6 end

(b) Calculate the force when the ball and the trampoline interacts.

1 [in out, ndir, DisF]= testradius(C, X, ...
Radius);%DisF is the vector of difference ...
between distance and R.

2 TEST = sum(in out);
3 in out = logical(in out);
4 if(TEST 6= 0)%if at list one index in in out is ...

nonezero, TEST will be nonzero.
5 F(in out,:) = F(in out,:) + K pen .* ...

(DisF(in out,:));
6 F ball = F ball - sum(K pen .* (DisF(in out,:)),1);
7 end

4. Apply Euler’s method on acceleration and velocity of both the ball and the
trampoline using Newton’s second law.

5. Store the location of ball and trampoline back into the big array of matrices so
that we can read it in the next time step.

We also implemented some interesting ways to plot the whole scene. The complete code
will be attached in the final section of the paper.

5 Results and Discussion

The results of our simulation show realistic behaviors of the balls interaction with the
trampoline as can be seen in the trajectories shown. After much experimentation, found
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that the ideal parameters for these bounces include a small rest length for the springs in
the network, so that the trampoline is always under some tension. A nice size for the
ball is 2 ∗ a or double the distance between adjacent nodes on the trampoline at t = 0.
Some careful considerations when running the program include scaling the mass of the
ball and the mass of the individual nodes on the trampoline in such a way that the ball
mass is not too heavy for the trampoline, otherwise the trampoline will collapse.
Recommended parameters for the stiffness of the links between nodes and the damping
constant can be found in the code below. If the damping constant for the springs is too
large when the rest length is near 0, then the interior nodes will break off. Also, it is
important to choose a time step small enough for the parameters chosen for the ball.
Namely, the larger the quantity Kball or in the code referred to as the ball’s imaginary
stiffness: Kpen, the smaller the time step dt should be to avoid instability where the
system spontaneously gains energy. The final variation in our parameter initializations
were the number of trampolines, location of each trampoline, angle of rotation of each
trampoline, starting location of the ball, and starting time for ball to be released.

Figure 4: Frames from animation of ball and trampoline at three different time steps.
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Figure 5: Frames from animation of ball and three trampolines at two different time steps.

Figure 6: 2D and 3D kinematic trajectories as a function of time of the ball as it bounces
on the same simple trampoline until it falls off. In the 3D plot note that red represents
the earliest time and yellow represents the latest time.
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A Complete code for the project

A.1 plotTram.m

1 function [N,NN,X,jj,kk, fixed] = plotTram(n,a, theta, mtrans)
2

3 %This function constructs a square trampoline with n points on one ...
side of

4 %the trampoline.
5 %The trampoline is a square net structure.
6 %That means the only links are vertical and horizontal, no cross ...

links will
7 %be implemented.
8 %Eventually, the trampoline will look like a net.
9

10 %input parameters:
11

12 % n = number of vertices on each side, n is at least 3.
13

14 if n < 3
15 error("There should be at least 3 vertices on each side")
16 end
17

18 %*** then it will be a n-1 by n-1 net.
19 % a = length of links
20

21 %theta is the angle of rotation.
22 %mtrans = is the 1x3 translation matrix.
23

24

25 %outputs:
26 % X(k,:) = coordinates of point k
27 % jj(l),kk(l) = indices of points connected by link l
28 % Rzero(l) = rest length of link l
29

30 % There are kmax points in the grid:
31 kmax = nˆ2;
32

33 %There are these many links given n*n vertices (proved by induction):
34

35

36 X = zeros(kmax, 3); %Matrix of vertices
37

38 %points on trampoline:
39 for k=1:n
40 for j = 1:n
41 X((k-1)*n+j,:) = [j*a, k*a, 0];
42 end
43 end
44
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45

46

47 nodes = (1:kmax)'; %nodes [1 2 3 4 ...]'
48 nb = zeros(kmax, 4);%the neighbour matrix, each node has at most 4 ...

neighbours
49

50

51 %construct neighbours
52 for iy = 1:n
53 for ix = 1:n
54 idx = ix + n * (iy-1);
55 if ix > 1; nb(idx,1) = idx - 1; end%if the node is left most, ...

it does not have left neighbour
56 if ix < n; nb(idx,2) = idx + 1; end%right most nodes
57 if iy > 1; nb(idx,3) = idx - n; end
58 if iy < n; nb(idx,4) = idx + n; end
59 end
60 end
61

62 %the below part is to reshape the neighbour matrix nb into link table
63 %you can print [nodes X nb] out to see it more clearly.
64 jj = []; kk = [];
65 for link = 1:size(nb,2)
66 inds = (nb(:,link) > 0);
67 jj = [jj;nodes(inds)]; %we actually count each link twice.
68 kk = [kk;nb(inds,link)];
69 end
70

71

72

73

74 mtrans 0 = [-(a*(n-1))/2-1 -(a*(n-1))/2-1 0];
75 X = X + mtrans 0; %translate to origin.
76

77

78

79

80 rotation = [ 1 0 0
81 0 cos(theta) -sin(theta)
82 0 sin(theta) cos(theta)]; %3x3 matrix X = nx3 ...

matrix.
83

84 X = X * rotation;
85

86 X = X + mtrans;%translate to target position.
87

88

89 %fixed = (X(:,1) == 1*a | X(:,1) == n*a | X(:,2) == 1*a | X(:,2) == n*a);
90 fixed = zeros(kmax,1);
91

92 for f = 1:kmax
93 if(f ≤ n ) fixed(f) = 1;
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94 elseif(f > (kmax - n)) fixed(f) = 1;
95 elseif(mod(f,n) == 1) fixed(f) = 1;
96 elseif(mod(f,n) == 0) fixed(f) = 1;
97 end
98 end
99

100 fixed = logical(fixed);
101

102 N = length(X);
103 NN = length(jj);
104

105

106 plot3(X(:,1),X(:,2),X(:,3),'.b','markersize',10);
107 hold on;
108 plot3([X(jj,1),X(kk,1)]',[X(jj,2),X(kk,2)]',[X(jj,3),X(kk,3)]','ko-');
109

110

111 axis equal
112 box on
113 axis([-10 10 -10 10 -5 20])

A.2 testradius.m

1 function [in out, ndir, DisF] = testradius(C, X, R)
2 %X: n * 3 matrix
3 %C: 1 * 3 matrix
4 %penalty force points from Center to Nodes
5 in out = zeros(size(X,1), 1);
6 ndir = zeros(size(X,1), 3);
7 DisF = zeros(size(X,1), 3);
8

9

10 for i = 1: size(X,1)
11 Dis = sqrt(sum((X(i,:) - C).ˆ2) );
12 direction = X(i,:) - C;
13 if(Dis ≤ R) %if it's within the radius
14 in out(i) = true;
15 ndir(i,:) = (direction)./Dis; % calculate direction.
16 DisF(i,:) = (R - Dis).* (direction/Dis); %distance with direction
17

18

19 else
20 in out(i) = false;
21 ndir(i,:) = 0;
22 end
23 end
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A.3 trampoline.m

1 clear all
2 close all
3

4 n = 7; %dimensions
5 a = 1; %length of each link;
6 num tram = 4; %numher of trampolines
7 kmax = nˆ2; %size of X
8 lmax = 4 * n * (n-1); %size of jj
9 thetax = [+pi/6 -pi/4 +pi/6 -pi/4];

10 mtrans = [0 +6 0;
11 0 -6 4;
12 0 -6 -15;
13 0 +6 -15];%some fancy structure of four trampolines
14 %-----------------preallocate everything-----------------
15 N0 = zeros(1,num tram);
16 NN0 = zeros (1,num tram);
17 X0 = zeros(kmax, 3, num tram );
18 jj0 = zeros(lmax, 1, num tram);
19 kk0 = zeros(lmax, 1, num tram);
20 fixed0 = zeros(kmax, 1, num tram );
21 U0 = zeros(kmax,3,num tram); %preallocate velocity of trampoline nodes
22

23

24 %-------------------trampoline mega loop ------------------------
25 for i = 1:num tram
26 thetax temp = thetax(i);
27 mtrans temp = mtrans(i,:);
28 [N temp,NN temp,X temp,jj temp,kk temp,fixed temp] = ...

plotTram(n,a,thetax temp,mtrans temp);%build the structure
29 N0(i) = N temp;
30 NN0(i) = NN temp;
31 X0(:,:,i) = X temp;
32 jj0(:,:,i) = jj temp;
33 kk0(:,:,i) = kk temp;
34 fixed0(:,:,i) = fixed temp;
35

36 end
37

38 %------------------global varibale------------------
39

40 g = 9.8; %gravity
41 M = 0.1; %mass of each node
42 K = 500; %stiffness
43 Dam = 5;% Damping constant
44

45 tmax = 3; %final time
46 dt = 0.001; %time step
47 nskip = floor(0.05/dt); %plotting time
48 clockmax = floor(tmax/dt+0.1);
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49 R0 = 0; %link lengths
50

51 S = K * ones(lmax,1); %stiffness table
52 D = Dam * ones(lmax,1); %damping table
53

54

55

56

57 %------------------ball information --------
58 C = [0 4.8 7];
59 Radius = 2*a;
60 M ball = 1; %mass of ball
61 U ball = zeros(1,3);%initialize ball speed
62 K pen = M ball * 1e5;
63

64 t ball start = 0; %time that the ball drops (s)
65 %-----------------------------------------
66

67

68

69 %----------make video------------------
70

71 % video = VideoWriter('easy rotate','MPEG-4'); %create the video object
72 % open(video); %open the file for writing
73 % writeVideo(video,getframe(gcf)); %write the image to ...

v i d e o close (video)
74

75

76 for clock=1:clockmax
77

78 for i = 1:num tram
79 %---------initialization-------------
80 N = N0(i);
81 NN = NN0(i) ;
82 X = X0(:,:,i);
83 jj = jj0(:,:,i);
84 kk = kk0(:,:,i);
85 fixed =logical(fixed0(:,:,i));
86 U = U0(:,:,i);
87 %-------forward euler's method-----------------
88 t = clock*dt; %get current time
89 DX = X(jj,:) - X(kk,:); %link vectors
90 DU = U(jj,:) - U(kk,:); %link velocity difference vectors
91 R = sqrt(sum(DX.ˆ2,2)); %link lengths
92

93 T = (S/2).*(R-R0) + (D./R).*sum(DX.*DU,2); %link tensions
94 TR = T./R; %link tensions divided by link lengths
95 FF = [TR,TR,TR].*DX; %link force vectors
96

97 F = zeros(N,3); %initialize force array for mass points
98 F(:,3) = -M*g; %apply force of gravity to each link point
99
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100 F ball = zeros(1,3); %initialize force array for mass points
101 F ball(:,3) = -M ball * g; %apply force of gravity to each ...

link point
102

103

104 % For each link, add its force with correct sign
105 % to the point at each end of the link:
106 for link=1:NN
107 F(kk(link),:) = F(kk(link),:) + FF(link,:);
108 F(jj(link),:) = F(jj(link),:) - FF(link,:);
109 end
110 %-------------test if the ball hits the ...

trampoline----------------
111

112 [in out, ndir, DisF]= testradius(C, X, Radius);
113 TEST = sum(in out);
114 in out = logical(in out);
115

116 if(TEST 6= 0)
117 F(in out,:) = F(in out,:) + K pen .* (DisF(in out,:));
118 F ball = F ball - sum(K pen .* (DisF(in out,:)),1);
119 end
120

121 %-----------------------------------------------------------
122

123

124

125 %---------------------ball movements--------------
126

127

128 U ball = U ball + dt*F ball./[M ball,M ball,M ball]; %update ...
velocities of all points

129 if(t < t ball start)
130 U ball = zeros(1,3);%initialize ball speed
131 end
132

133 C = C + dt*U ball; %update positions of all points
134

135 %------------Trampoline movements------------
136 U = U + dt*F./[M,M,M]; %update velocities of all points
137 U(fixed,:) = 0; %don't move the ground
138 X = X + dt*U; %update positions of all points
139

140

141 %---------------update information-------------------
142 X0(:,:,i) = X;
143 U0(:,:,i) = U;
144 end
145

146

147

148
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149 %----------------plot----------------------------------
150

151 clc; fprintf('t = %1.4f\n',t);
152 if(mod(clock,nskip)==0)
153 figure(1);
154 cla;
155 for i = 1:num tram
156 X = X0(:,:,i);
157 if(i == 1) hold on;end
158

159 %plot3([X(jj,1),X(kk,1)]',[X(jj,2),X(kk,2)]',[X(jj,3),X(kk,3)]','ko-','MarkerSize',5)
160 scatter3(X(:,1),X(:,2),X(:,3),'k') %faster to plot, but ...

not as nice
161

162

163 [sphere1, sphere2, sphere3] = sphere(20);
164 surf(Radius*sphere1 + C(1), Radius*sphere2 + ...

C(2),Radius*sphere3 + C(3));
165 axis equal
166 box on
167 axis([-15 15 -15 15 -20 20])
168 %axis([1 (n+1)*a 1 (n+1)*a -10 +10]);
169 %view(90+clock * 1/30,20)
170 view(100,20)
171 end
172 drawnow
173

174 % writeVideo(video,getframe(gcf)); %write the ...
image to v i d e o close (video)

175

176 figure(2)
177 hold on;
178 %plot3(C(1),C(2),C(3),'.','markersize',10,'color',[1 ...

clock/clockmax 0])
179 plot(clock,C(3),'.r');
180 axis equal
181 box on
182 axis([-15 15 -15 15 -20 20])
183 %view(60,20)
184 view(clock/4,20)
185

186

187 end
188

189

190

191

192

193

194 end
195 % close(video)
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