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Abstract

This report describes an improvement to a compartmental pulsatile heart model.
The original model without any modifications is not equipped with the appropriate
apparatus to accurately simulate physiological changes as a result of dynamical per-
turbations such as exercise. A feedback controller that regulates blood pressure was
implemented to model the appropriate physiological changes. The fundamental change
made to the original model is that the heart rate will be a discrete time-variable rather
than a constant parameter. A differential equation model for varying heart rate us-
ing a time-axis warping compliance function was formulated and used to understand
paradoxical relationship between blood pressure and systemic resistance.

1 Introduction

During exercise, various changes to cardiovascular function occur. Blood pressure and heart
rate rise and the blood vessels dilate to allow for the blood to flow more freely and quickly
to the active muscles so that oxygen can be delivered there. In the pulsatile blood flow
model for the heart, there is no feedback control mechanism to simulate something like
exercise. The goal of this project is to introduce the uncontrolled model and its limitations
and then modify it to incorporate feedback control of blood pressure and compare the results
to physiological expectations.

2 Mathematical Model for Pulsatile Blood Flow

The heart pumps blood into the arteries in discrete surges during contractions, causing the
blood pressure to rise and fall periodically. Therefore, in this model, the pressures, flows,
and volumes are taken to be time-dependent functions P (t), Q(t), and C(t) respectively. The
flow is the volume of blood passing through a certain point per unit time. Compliance is the
elastic deformation property of a chamber. When the ventricles pump, they go through two
phases during one cardiac cycle: systole, where the ventricular muscles contract to pump
blood into the lungs and organs, and diastole, where the ventricular muscles relax and allow
for blood to fill up the chamber again. Consider a compliance vessel with values for inflow
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Figure 1: Diagram of the left heart and systemic artery connectivity and blood flow direc-
tionality. Pressures and flows are PLA = left atrial pressure, PLV = left ventricular pressure,
Psa = systemic arterial pressure, QMi; = flow through the mitral valve (indicated here by a
dotted arrow because the mitral valve is closed at the moment shown), QAo = flow through
the aortic valve, and Qs = outflow from the systemic arterial tree, i.e., aggregate flow through
all of the tissues of the body.

Q1(t) and outflow Q2(t). If the vessel is not in a steady state, then these two values are
unequal and the volume of the vessel is no longer a constant. Let the volume of a vessel be
regarded as V (t) at a time t. We say the rate of change of volume with respect to time is
the difference between the inflow and outflow of the vessel:

dV

dt
= Q1 −Q2. (1)

The compliance equation can be used to relate volume as so:

V (t) = CP (t) + Vd. (2)

where Vd is known as the dead volume which is the residual volume when the pressure is
zero. Deriving this equation with respect to time yields the equality:

C
dP

dt
= Q1 −Q2, (3)

a convenient differential equation that accounts for pressure as a function of time in a com-
pliance chamber with unsteady flow.

2.1 Uncontrolled Circulation

The scope of the model will focus on just the left ventricle and the systemic arteries. We
consider both of these to be compliance chambers connected via a resistance element. The
left ventricle is equipped with an inflow valve called the mitral valve and an outflow valve
called the aortic valve. A healthy valve permits flow in a single direction with low resistance
and blocks flow in the reverse direction. This is illustrated in figure 1.
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To incorporate these components into our model, we begin by introducing the equations
for volume conservation in each chamber:

dVLV

dt
= QMi −QAo (4)

dVsa

dt
= QAo −Qs, (5)

as well as the equations for the compliance relations for each chamber:

VLV = Vd,LV + CLV(t)PLV (6)

Vsa = Vd,sa + CsaPsa (7)

Recall from earlier that the compliance is related to the elasticity of a vessel. Since the
arteries and veins do not exhibit much change in this property during a cardiac cycle, Csa

is taken to be constant and here we are considering CLV to be a varying function of time
since the ventricle goes through periodic contracting and relaxing phases. Next, we define
flow equations that take into consideration the pressure differences to determine whether the
valve in question is open or closed. For each of the valve flows we define indicator variables
1Mi and 1Ao which take on either values of 1 or 0 to indicate that the corresponding valve is
open or closed respectively.

QMi = 1Mi
(PLA − PLV)

RMi

(8)

QAo = 1Ao
(PLV − Psa)

RAo

(9)

Qs =
Psa

Rs

(10)

where Rs is the systemic resistance, RAo is the resistance of the aortic valve, and RMi is the
resistance of the mitral valve. The valve states are determined by the pressure differences
between the vessels that the valve connects. If the pressure difference is positive (in the
direction that blood is supposed to flow) then the valve is open and if it is negative then the
valve is closed:

1Mi =

{
0 PLA < PLV

1 PLA > PLA
(11)

1Ao =

{
0 PLV < Psa

1 PLV > Psa
(12)

In the special case that the upstream and downstream pressures of the valve are equal, it
makes no difference whether we regard the valve as closed or open since either way the flow
will be zero.

Now the model for the left heart and the systemic arteries consists of nine equations.
The nine unknown functions of time are the left ventricular and systemic arterial volumes
and pressures VLV, Vsa PLV, Psa, the flows through the mitral valve, aortic valve, systemic
resistance QMi, QAo, Qs, and the indicator variables for the mitral and aortic valves 1Mi and
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Figure 2: Part of a general model of the whole circulation. A pair of compliance chambers
is shown, each chamber labeled by its pressure Pi or Pj. Every such pair in the model is
connected by a pair of resistance vessels equipped with valves, the two valves of the pair
pointing in opposite directions. Sji = 0 or 1, denoting the state of the valve that allows
flow from compliance chamber i into compliance chamber j. R;i = resistance of the vessel in
series with this valve.

1Ao. We take the left ventricular compliance CLV to be a given function of time. The constant
parameters of this set up are left atrial pressure PLA, mitral and aortic valve resistances RMi

and RAo, systemic resistance Rs, and systemic arterial compliance Csa. The left ventricular
compliance is periodic with period T and expressed in a way that considers time zero to be
at end-diastole and thus at a maximum:

CLV(t+ T ) = CLV(t) (13)

CLV(t) =

 CLVD(CRVS

CLVD
)

1−exp(−t/τS)

1−exp(−TS/τS) 0 ≤ t ≤ TS

CLVS(CLVD

CLVS
)

1−exp(−(t−TS)/τD)

1−exp(−(T−TS)/τS)/τD TS ≤ t ≤ T
(14)

This form of the compliance equation for the left ventricle shows us the transition from
maximum value CLVD to minimum value CLVS and the speed of these transitions is inversely
proportional to the time constants τS and τD.

2.2 Numerical Methods for Uncontrolled Pulsatile Model

To solve the nine equations for the left heart and systemic arteries, we simplify them to
express everything in terms of pressure.

d(CLVPLV)

dt
=

1Mi(PLA − PLV)

RMi

− 1Ao(PLV − Psa)

RAo

(15)

Csa
dPsa

dt
=

1Ao(PLV − Psa)

RAo

− Psa

Rs

(16)

The systemic arterial compliance was factored out of the time derivative because we noted
earlier that it is a constant. Next, the backwards Euler method can be used as it was before
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to numerically solve the differential equations:

CLV(t)PLV(t) − CLV(t− ∆t)PLV(t− ∆t)

∆t
(17)

=
1Mi(t)

RMi

(PLA − PLV(t)) − 1Ao(t)

RAo

(PLV(t) − Psa(t)), (18)

Csa
Psa(t) − Psa(t− ∆t)

∆t
(19)

=
1Ao(t)

RAo

(PLA − Psa(t)) − Psa

Rs

(t). (20)

Consider this to be a 2 × 2 linear system where the tricuspid and aortic valve states are
known. We use this assumption to solve for the pressures of the left ventricle and systemic
arteries in terms of the tricuspid and aortic valve indicator functions. We begin by rewriting
the above equations into standard form:

C11(t)PLV(t) + C12(t)Psa(t) = B1(t), (21)

C21(t)PLV(t) + C22(t)Psa(t) = B2(t) (22)

where we let:

C11(t) = CLV(t) + ∆t(
1Mi(t)

RMi

+
1Ao(t)

RAo

) (23)

C12(t) = C21(t) = −∆t(
1Ao(t)

RAo

) (24)

C22(t) = Csa + ∆t(
1Ao(t)

RAo

+
1

Rs

), (25)

B1(t) = CLV(t− ∆t)PLV(t− ∆t) + ∆t
1Mi(t)

RMi

PLA, (26)

B2(t) = CsaPsa(t− ∆t) (27)

The solution in terms of the determinant D(t) of the 2 × 2 matrix is as follows:

PLV(t) =
B1(t)C22(t) −B2(t)C12(t)

D(t)
(28)

Psa(t) =
B2(t)C22(t) −B1(t)C21(t)

D(t)
(29)

D(t) = C11(t)C22(t) + C12(t)C21(t) (30)

It is necessary to show that the determinant is strictly greater than zero in order to confirm
there is never a zero in the denominator. It is sufficient to show that

C11(t)C22(t) > C12(t)C21(t) (31)

(32)

5



Rewriting the left hand side yields:

[CLV(t) + ∆t
1Mi(t)

RMi

+ ∆t
1Ao(t)

RAo

] ∗ [Csa + ∆t
1Ao(t)

RAo

+ ∆t
1

Rs

] (33)

= (∆t
1Ao(t)

RAo

)2 + σ > (∆t
1Ao(t)

RAo

)2 = C12C21 (34)

where σ is a positive value resulting from distributing the product on the left hand side.

3 Results for Uncontrolled Circulation during Exercise

Cardiac output is defined as the volume of blood delivered to the organs per minute and is
given by the following:

Qs = Vs × F = Vs/T (35)

where Vs is the stroke volume (blood volume delivered to organs per beat) and F is the heart
rate in beats per minute and the reciprocal of the period T . During exercise, the arterioles in
the exercising muscle dilate, which results in a drop in systemic resistance Rs. The cardiac
output (Qs) rises primarily due to an increase in heart rate as does the blood pressure
Psa. This section will study the effects of the uncontrolled pulsatile model in response to a
reduction in Rs.

For one, we know that the heart rate in our model is constant, and thus we should not
expect the cardiac output to change much. Also, by Ohm’s law, if the systemic resistance
goes down, so should the systemic arterial pressure. In the pulsatile model, let tstart = 0.20
be the time that we begin exercise and let tend = 0.55 be the time that we stop exercise.
The starting and stopping of exercise are introduced as a step change (decrease and increase,
respectively) in Rs at those times by a factor of roughly 2. In order to analyze trends in the
pulsatile data, which is quite oscillatory, we can apply a low-pass filter on cardiac output
and blood pressure to get a more steady signal, which will prove to be quite useful later on
especially for blood pressure:

τP
dPfiltered

dt
= Psa − Pfiltered (36)

τQ
dQfiltered

dt
= Qs −Qfiltered (37)

where τP and τQ are time constants for the respective filters. We can simply use forward
Euler to get an explicit expression for the filtered values at each time step:

τP
Pfiltered(t+ ∆t) − Pfiltered(t)

∆t
= Psa(t) − Pfiltered(t) (38)

τQ
Qfiltered(t+ ∆t) −Qfiltered(t)

∆t
= Qsa(t) −Qfiltered(t) (39)

In figure 3 we can see that (by following the red line for the filtered values) as exercise
begins with the step reduction of Rs there is also a sharp drop in blood pressure and a slight
increase in cardiac output that dies back down before exercise nears its end. This is quite
far from what really happens in exercise and this is a problem we will attempt to solve in
the subsequent sections.
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Figure 3: Cardiac output (systemic flow, Qs) plotted as a function of time and systemic arte-
rial pressure plotted as a function of time. Here we can see that when exercise was introduced
at tstart = 0.2, blood pressure dropped and cardiac output only modestly increased.

4 Feedback System for Controlled Circulation

We look to systematically fix the problems in our model that were made apparent in the
previous subsection. Our goal is to see a larger increase in cardiac output than what we saw
before and also to have an increase in blood pressure.

4.1 Varying Heartrate Function

The main issue in the uncontrolled circulation model was that we fixed the heartrate F
to be some constant value through out the duration of the simulation. This resulted in
discrepancies between the real physiology and the model. The solution is to implement
a time-varying function F (t) for continuously varying heartrate. The feedback system that
controls heartrate is a baroreceptor (pressure detector) loop based on some established neural
control. Thus, we want our model to detect when exercise begins and adjust heartrate
accordingly. When we drop our systemic resistance, the first thing that happens is the blood
pressure lowers due to Ohm’s Law (10). Let P ∗ be some set pressure, perhaps the systemic
arterial mean pressure for normal parameters, and compare the filtered pressure Pfiltered to
it at every time step and inversely change the heartrate based on this:

F (t) = Fheart + ∆F (40)

∆F = cFheart
Pfiltered − P ∗

P ∗ (41)
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Figure 4: Continuous heart rate as a function of time compared to the set steady heart rate.
Rs is decreased by a factor of 2 at tstart = 0.2 and restored at tend = 0.55

where c < 0 is acting as the gain of this feedback system and Fheart is the initial steady
heartrate. Note that whenever Pfiltered < P ∗, we will have an increase in heartrate.

The next step is to implement F (t) into our compliance function which drives our model.
To do this, we consider our known periodic function for compliance, Cheart(theart) with period
Theart and heart rate Fheart = 1/Theart. To produce continuously varying heartrate F (t), we
set our new compliance function to look like:

C(t) = CLV(theart(t)) (42)

where we can solve for theart with the following ODE:

dtheart

dt
=

F (t)

Fheart

(43)

4.2 Results for a Controlled Circulation during Exercise

Here, we run the same experiment as we did in the uncontrolled circulation model. Now we
should see an increase in heartrate when we decrease Rs as a response to the blood pressure
drop and as a result. This will in turn cause the cardiac output to rise.

There is still, however, a limitation with this controlled model. Note in figure 5 that while
cardiac output is increasing by nearly 100%, blood pressure is decreasing still, just not as
much as it was in the uncontrolled model. This is a still a big improvement, but we can do
better!

The reason that the blood pressure sees a decrease during exercise in this partially
controlled model is that when systemic resistance drops, our set pressure P ∗ stays the
same. This is not the same as what happens in the physiology. When we plan to initiate
exercise, our brain essentially knows this and prepares for it and we model this by raising
P ∗ simultaneously as we drop Rs at tstart. The important thing to note here is that when
we stop exercise in the model at tend we first need to change the set pressure back to the
steady mean systemic arterial pressure. We cannot however restore our systemic resistance
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Figure 5: Effects on time course for cardiac output and blood pressure during exercise.
Reduction in systemic resistance occurs at tstart = 0.2 and is restored at tend = 0.55. Cardiac
output nearly doubles during exercise while blood pressure slightly falls.
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Figure 6: Effects on time course for cardiac output and blood pressure during exercise.
Reduction by factor 2 in systemic resistance occurs at tstart = 0.2 along with an increase
in set pressure P ∗ by roughly a factor of 2. P ∗is restored at tend = 0.55 and Rs is restored
at tend + τP . Cardiac output roughly triples during exercise and blood pressure increases
significantly as well.

at this time, since this will cause a huge jump in blood pressure at the stop of exercise
(again due to Ohm’s Law). Instead we restore the systemic resistance at tend + τend where
τend is a small time constant. It turns out that a good choice for this time constant is the
time constant we used for the low-pass-filter on blood pressure, τP .

Now we should expect the model to resemble the physiology rather closely. The heart rate
(and thus cardiac output) as well as the blood pressure should both rise significantly when
exercise begins and return to normal when exercise ends. See figure 6

The compliance function that detects this changing heart rate looks like a distorted version
of the original compliance function that detects a constant heartrate. This distortion is in
the time axis. See figure 7 and 8 for the partially controlled model with constant set
pressure and the fully controlled model with varying set pressure.
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Figure 7: Compliance as a function of time for the last 10 cardiac cycles of the controlled
circulation with constant P ∗. We see shifts in the peaks indicating that the diastolic and
systolic phases are occurring at different times for the two compliance functions.

Figure 8: Compliance as a function of time for the last 10 cardiac cycles. We see shifts in
the peaks indicating that the diastolic and systolic phases are occurring at different times
for the two compliance functions.
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5 Implementation in MATLAB

There are various programs involved in this simulation. We have a function for the
compliance, a function to compute the pressures and valve states, and a driver script from
which we run the simulation that we can toggle between controlled and uncontrolled
models with. The following subsections outline in detail how these programs work.

5.1 CV now.m

This is a function that implements the known compliance function we saw earlier. We use
this compliance value to solve for all the other unknowns such as pressure, volume, and
flow.

function CV=CV_now(t,CVS,CVD)

%filename: CV_now.m

global T TS tauS tauD;

tc=rem(t,T); %tc=time in the current cycle,

%measured from start of systole.

if(tc<TS)

e=(1-exp(-tc/tauS))/(1-exp(-TS/tauS));

CV=CVD*(CVS/CVD)^e;

else

e=(1-exp(-(tc-TS)/tauD))/(1-exp(-(T-TS)/tauD));

CV=CVS*(CVD/CVS)^e;

end

5.2 PLV Psa new.m

This is a function that solves for the pressures under the assumption that the valve states
are known:

function [PLV,Psa]=PLV_Psa_new(PLV_old,Psa_old,CLV_old,CLV,SMi,SAo)

%filename PLV_Psa_new.m

global Csa Rs RMi RAo dt CHECK PLA;

C11=CLV+dt*((SMi/RMi)+(SAo/RAo));

C12=-dt*(SAo/RAo);

C22=Csa+dt*((SAo/RAo)+(1/Rs));

B1=CLV_old*PLV_old+dt*(SMi/RMi)*PLA;

B2=Csa*Psa_old;

D=C11*C22-C12^2;

PLV=(B1*C22-B2*C12)/D;

Psa=(B2*C11-B1*C12)/D;

if (CHECK)

LHS1=(CLV*PLV-CLV_old*PLV_old)/dt;

RHS1=(SMi/RMi)*(PLA-PLV)-(SAo/RAo)*(PLV-Psa);

CH1=RHS1-LHS1;

LHS2=Csa*(Psa-Psa_old)/dt;
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RHS2=(SAo/RAo)*(PLV-Psa)-(1/Rs)*Psa;

CH2=RHS2-LHS2;

end

5.3 set SMi SAo.m

This script is setting the valve states, which uses the pressures. Since the pressures rely on
the valve states, we use trial and error to find self consistent valve states and pressures.

%filename: set_SMi_SAo.m

%script to find

%self-consistent valve states and pressures:

done=0; %not done yet!

while(~done) %keep trying if not done (see below)

SMi_noted=SMi; %note the value of SMi

SAo_noted=SAo; %note the value of SAo

% set pressures based on valve states:

[PLV,Psa]=PLV_Psa_new(PLV_old,Psa_old,CLV_old,CLV,SMi,SAo);

%and then set valve states based on pressures:

SMi=(PLA>PLV); %evaluates to 1 if PLA>PLV, 0 otherwise

SAo=(PLV>Psa); %evaluates to 1 if PLV>Psa, 0 otherwise

%we’re done if both valve states are unchanged:

done=(SMi==SMi_noted)&(SAo==SAo_noted);

end

5.4 circ.m

This is the driver script that runs the entire program:

%filename: LV_sa.m

close all; clear all %clear all variables

clf %and figures

global T TS tauS tauD;

global Csa Rs RMi RAo dt CHECK PLA;

in_LV_sa %initialize

t_heart = dt;

t_start = .2; %time exercise starts

t_end = .5;%time exercise stops

for klok=1:klokmax

t=klok*dt;

if t>t_start && t<t_end %start exercising

Rs = 9; % ~Rs/2 for exercise

Psa_set = 150; %raise the set pressure to ensure BP rises too

end

if t>t_end %stop exercising

Psa_set = Psa_mean; %reset the set pressure back to the mean
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end

if t>t_end+tauF

Rs = 17.5; %reset the systemic resistance

Psa_set = Psa_mean;

end

PLV_old=PLV;

Psa_old=Psa;

Qs_old = Qs;

P_filt_old = P_filt;

Q_filt_old = Q_filt;

%Forward Euler Low Pass Filter:

P_filt = (dt/tauF)*(Psa_old - P_filt_old) + P_filt_old; %Filtered Pressure

Q_filt = (dt/tauF2)*(Qs_old - Q_filt_old) + Q_filt_old; %Filtered Flow

%Change in heartrate based on pressure:

deltaF = c*(F_heart*(P_filt - Psa_set)/Psa_set);

F = F_heart - deltaF ;

%Forward Euler to solve t_heart:

t_heart_old = t_heart;

t_heart = (F/F_heart)*dt + t_heart_old;

CLV_old=CLV;

CLV=CV_now(t_heart,CLVS,CLVD);

%find self-consistent

%valve states and pressures:

set_SMi_SAo;

%store in arrays for future plotting:

t_plot(klok)=t;

t_heart_plot(klok) = t_heart;

CLV_plot(klok)=CLV;

PLV_plot(klok)=PLV;

Psa_plot(klok)=Psa;

VLV_plot(klok)=CLV*PLV+VLVd;

Vsa_plot(klok)=Csa*Psa+Vsad;

QMi_plot(klok)=SMi*(PLA-PLV)/RMi;

QAo_plot(klok)=SAo*(PLV-Psa)/RAo;

Qs_plot(klok)=Psa/Rs;

Qs = Qs_plot(klok);

SMi_plot(klok)=SMi;

SAo_plot(klok)=SAo;

P_filt_plot(klok) = P_filt;

Q_filt_plot(klok) = Q_filt;

F_plot(klok) = F;

F_heart_plot(klok) = F_heart;

end
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6 Appendix: Parameter Initialization

Here we include all the parameter values that we used for the simulation:

%filename: in_LV_sa.m (initialization for LV_sa)

T =0.0125; %Duration of heartbeat (minutes)

F_heart = 1/T; %constant

F = F_heart; %initial value for the heart rate variable ;

TS=0.0050; %Duration of systole (minutes)

tauS=0.0025; %CLV time constant during systole (minutes)

tauD=0.0075; %CLV time constant during diastole (minutes)

Rs=17.86; %Systemic resistance (mmHg/(liter/minute))

RMi=0.01; %mitral valve resistance (mmHg/(liter/minute))

RAo=0.01; %aortic valve resistance (mmHg/(liter/minute))

%The following value of Csa is approximate;

%needs adjustment to make blood pressure 120/80:

Csa=0.00175; %Systemic arterial compliance (liters/mmHg)

CLVS=0.00003; %Min (systolic) value of CLV (liters/mmHg)

CLVD=0.0146; %Max (diastolic) value of CLV (liters/mmHg)

Vsad=0.825 ; %Systemic arterial volume when Psa=0 (liters)

VLVd=0.027; %Left ventricular volume when PLV=0 (liters)

PLA=5 ; %Left atrial pressure (mmHg)

dt=0.01*T ; %Time step duration (minutes)

%This choice implies 100 timesteps per cardiac cycle.

c=10; %gain of the feedback system (set to 0 to get uncontrolled model)

klokmax=80*T/dt; %Total number of timesteps

%simulation to run for 80 cardiac cycles

tmax = klokmax*dt;

PLV=5 ; %Initial value of PLV (mmHg)

Psa=80 ; %Initial value of Psa (mmHg)

P_filt = 93.470986390818837; %initial value of P_filtered (mmHg)

Qs = 5.6; %Initial value for cardiac output

Q_filt = 5.233537871826244; %initial value for filtered cardiac output

tauF = 4*T; %time constant of the low pass filter for P_filt

tauF2 = 4*T; %time constant of LPF of Q_filt

Psa_mean = 93.470986390818837;

Psa_set = Psa_mean; %set pressure starting at the mean

%set initial valve states:

SMi=(PLA>PLV); %evaluates to 1 if PLA>PLV, 0 otherwise

SAo=(PLV>Psa); %evaluates to 1 if PLV>Psa, 0 otherwise

CLV=CV_now(0,CLVS,CLVD); %Initial value of CLV (liters/mmHg)
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%Initialize arrays used to store data for plotting:

%Although the program will work without doing this,

%it will run MUCH faster if MATLAB knows in advance

%how much space is needed for these arrays.

t_plot=zeros(1,klokmax);

CLV_plot=zeros(1,klokmax);

PLV_plot=zeros(1,klokmax);

Psa_plot=zeros(1,klokmax);

VLV_plot=zeros(1,klokmax);

Vsa_plot=zeros(1,klokmax);

QMi_plot=zeros(1,klokmax);

QAo_plot=zeros(1,klokmax);

Qs_plot=zeros(1,klokmax);

SMi_plot=zeros(1,klokmax);

SAo_plot=zeros(1,klokmax);

P_filt_plot=zeros(1,klokmax);

Q_filt_plot=zeros(1,klokmax);

%For self-checking in the function PLV_Psa_new, set CHECK=1

%To skip the self-checking, set CHECK=0

CHECK=1;

7 Conclusion

In this project, we modeled the effects of exercise on the human heart circulation controlled
by the baroceptor feedback loop. We began by showing that the compartmental pulsatile
model is not equipped to adjust to rapid changes in blood pressure and arterial dilation in
the form of systemic resistance due to the fact that heartrate is a fixed parameter. In the
new model, we treat heartrate as a varying function of time and show that we can achieve
the effects of exercise in the pulsatile model by comparing a filtered signal of the pulsatile
blood pressure to some set point and adjust the heart rate accordingly. We further improve
on this by having the set point be a varying function of time.
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