

INTRODUCTION

We present a model for the steady state circulation in the body, incorporating the effects of gravity. The processes underlying the control of blood flow under hyper-gravity and micro-gravity are complex and non-linear. Much has already been done to model the circulatory system under micro-gravity using partial differential equations. Few models have approached this from a prediction perspective. The simplicity and interpretability of this modeling approach enables us to predict G tolerance, and accurately parameterize a linear control model for the steady state circulation for a particular patient. We use biometric data from a centrifuge study to compare our model results to experimental simulations.

Blue: Oxygen-poor blood

WHAT IS THE MAXIMUM G-FORCE THAT A RELAXED SUBJECT CAN TOLERATE?

ULTRASOUND **Custom Parameters** for Study Subject

height: 66 cm eye-heart: 32 cm heart-seat: 42 cm **BP:** 108/68, **HR**: 53 **MAP:** 81.3 systemic arterial resistance: 16.49-20.02 mm / (L/min) **blood volume**: 3.7 L +/- 10% (sweat loss)

Cardiac Output: CO = SV * HF

Cylinder volume = $\pi r^2 h$ Need: Radius of LVOT (r) and VTI from LVOT (h

Ultrasound: John Davis, BA UTMB School of Public and Population Health

Biger a star galler a saf

Simulation of circulation response to accelerational forces during spaceflight

Zan Ahmad^{1,4}Alanna Kennard¹, Karen M. Ong^{1,2}Charles Puel^{1,3}Rebecca S. Blue², Charles S. Peskin¹

Courant Institute of Mathematical Sciences, New York University,¹University of Texas Medical Branch,²Pediatric Cardiology Division, Baylor College of Medicine³, Department of Applied Mathematics and Statistics, Johns Hopkins University⁴

Reserve Volume

$$egin{aligned} V_{ ext{total}}^{0} &= V_{ ext{total}} - C_p rac{C_{RVD}}{C_{LVD}} (\Delta P_{RA})^* - (T_p G_s + C_{sa}) (P_{sa}^u)^* - ig(T_p G_s^l + C_{sa}^lig)
ho g H^u - C_s^l
ho gig(-H^lig) \ \overline{P_{RA} - P_{ ext{thorax}}} &= ig(\Delta P_{RA}ig)^* \end{aligned}$$

-Successful personalized prediction of G-tolerance