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Abstract

In these notes, we present a linear model of the human circulatory system to predict
a subject’s tolerance to hypergravitational forces. Key features of this approach include
feedback control elements to model the autonomic nervous system’s regulation of heart
rate and reserve volume, compartmentalization of the upper and lower circulation to
allow for gravitational acceleration in the vertical direction to be incorporated, and the
inclusion of partial collapse of the systemic veins. We adopt a steady-state modeling
approach, the simplicity of which enables us to predict an individual’s tolerance to high
gravitational acceleration analytically.

1 Introduction

The biophysical processes underlying haemodynamics and the regulation of blood flow are
complex and nonlinear. They involve the pulsatile contractions of the heart chambers, which
are regulated by the pacemaker in the sino-atrial node in healthy individuals, and the mor-
phology and plasticity of the vascular system. The rate of the heart’s contractions is in
turn mediated by baroreceptors located in the carotid sinus and aortic arch which detect
changes in pressure. The pulsatile contractions of the heart, smooth muscle and skeletal
muscle, along with the compliance of blood vessels, regulate the flow of fluid throughout the
vascular system. Several phenomena are known to cause temporary changes in blood flow,
causing reduced blood flow to the brain and resulting in a loss or alteration of consciousness.
These include amongst others: orthostatic hypotension, transient ischemic attack, and loss
of blood volume.

Of particular interest to us is gravity-induced loss of consciousness (G-LOC), which occurs
when the sudden increase in the vertical acceleration, Gz, causes blood to pool in the lower
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extremities. To investigate the relationship between high Gz and hyper-gravity induced
pathologies such as G-LOC, we designed a mathematical model which incorporates the effects
of gravitational acceleration and studied its numerical behavior using Python. While the
effects that vertical and lateral acceleration have on the body are fundamentally non-linear,
we postulate that this linear model is sufficient for granular tasks, such as predicting an
individual’s G-tolerance.

Studies on the effects of centrifugation-induced hypergravity typically focus on post-
facto gravity-induced changes on the circulatory system. To our knowledge, this is the
first steady-state model with feedback control that includes partial venous collapse, and the
first mathematical study of the effect of high Gz on the maintenace of homeostasis on the
circulation. Further novelty of this work comes from the calibration of model parameters to
a subject’s centrifuge simulation data and monitoring,

2 Model Derivation

In this section, we present the model used in this work. The following subsections describe
a steady-state flow model which incorporates the effects of gravity in the vertical direction,
Gz, on hemodynamics. A unique feature of this model is the inclusion partial collapse of the
systemic veins. We additionally (describe) a method for feedback control in the circulation
to allow for the model to appropriately respond to changes in its parameters.

2.1 Blood Flow Model

We divide the circulation into compartments and divide the vascular compartments into
compliance chambers and resistance elements. Each compartment is identified with a unique
index i. We assume the following relation between the compliance Ci, the pressure difference
between the interior and exterior of the vessel Pi, and the volume Vi:

Vi = V 0
i + CiPi = V 0

i + Ci(P
interior
i − P exterior

i ). (1)

Compliance is the ability of a structure to change shape as a function of volume and
pressure. The contractions of cardiac chambers result in the compliance values periodically
oscillating between a minimum and maximum value during the phases of systole, when the
chamber contracts, and diastole, when the chamber relaxes, respectively. The dead volume,
V 0
i is equal to the residual chamber volume at zero pressure. We will interchangeably refer

to dead volume as reserve volume, since a reduction in V 0 may compensate for a loss in total
volume. The total volume, Vtotal is the sum of the volumes in all compartments:

Vtotal =
∑
i

Vi, (2)

and similarly, the total reserve volume, V 0
total is the sum of each of the reserve volumes:

V 0
total =

∑
i

V 0
i . (3)
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Subtracting equation (3) from (2) and substituting (1) yields:

Vtotal − V 0
total =

∑
i

CiPi. (4)

Figure 1: Schematic of the compartmentalization of the circulation used in this model. (u =
upper, l = lower, p = pulmonary, s = systemic, pv = pulmonary veins, sv = systemic veins,
sa = systemic arteries, pa = pulmonary arteries, RA = right atrium, RV = right ventricle,
LA = left atrium, LV = left ventricle)

In a resistance vessel, the flow is proportional to the pressure difference from one end of
the vessel to the other. Thus any flow through a resistance vessel between chamber i and j,
Qij is given by Ohm’s Law/Poiseuille’s Equation:

Qij =
Pi − Pj

Rij

. (5)

We model the systemic arteries (sa), systemic veins (sv), pulmonary arteries (pa) and pul-
monary veins (pv) as compliance vessels and tissues and organs as resistance vessels.

In order to simplify the modelling process we average over the cardiac cycle, effectively
reducing the pulsatile flow to a continuous flow. Moreover, as the model descrives the system
at steady-state, the pressures, flows, and volumes are all time-independent. See Figure 1 for
schematic of the connectivity of the described elements.

Cardiac output or systemic flow is defined as the volume of blood delivered to the systemic
circulation over time and can be computed by:

Qsa,sv = FVstroke (6)

where Qsa,sv = Qs is the flow between the systemic arteries and systemic veins, F is heart
rate in beats per unit time and stroke volume Vstroke is the volume of blood ejected by the
left ventricle per heart beat.
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Letting t be time, and recalling our steady-state assumption of time-independence for all
chambers i:

dVi

dt
=

n∑
j=1

Qji −
m∑
k=1

Qik = 0 (7)

or in other words, the total flow entering a vessel is equal to the flow exiting a vessel. Thus,
we may drop the subscript on Qij for any i and j and simply refer to Q as flow in general.

For most of the systemic circulation, the external pressure is that of the atmosphere,
which we denote as zero pressure. For the pulmonary circulation and both sides of the
heart, the external pressure is the intrathoracic pressure, denoted as Pthorax, which varies
during the cycle of breathing and is lower during inspiration and higher during expiration.

On average, the value of Pthorax is negative and is to be thought of as the pressure in
the tissue surrounding the lungs. The lungs are elastic and tend to collapse and a pressure
difference between the air in the lungs and the air in the surrounding tissue is needed to keep
them open. Negative intrathoracic pressure is generated by contraction of the diaphragm.

Since F is the same for both the left and right side of the heart (as a result of there being
a single pacemaker, known as the sino-atrial node) the stroke volumes of the left and right
heart are equal and are approximated by using equation (1) for the volume in a ventricle
at the end of diastole (and considering the volume remaining in the ventricle at the end of
systole to be negligible):

Vstroke = CLVD(PRA − Pthorax) (8)

= CRVD(Ppv − Pthorax) (9)

where CLVD and CRVD are the left and right ventricular diastolic compliances respectively.
Combining equations (6) with (8) and (9), respectively, yields the following:

Q = FCLVD(PRA − Pthorax) (10)

= FCRVD(Ppv − Pthorax) (11)

Additionally, by equation (5) and the steady state assumption, we have pulmonary flow
given by:

Q =
Ppa − Ppv

Rp

(12)

2.2 Incorporation of Gravity

To incorporate the effects of gravity in the vertical direction, Gz, we compartmentalize the
systemic circulation into an upper and lower component, each with their own pressure, flow
and resistance values. See Figure 2 for a visual schematic of this compartmentalization.
Then, by equation (5),

Qu
s =

P u
sa − P u

sv

Ru
s

(13)

Ql
s =

P l
sa − P l

sv

Rl
s

(14)
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Figure 2: Compartmentalization of the circulation into upper, lower and thoracic compo-
nents. (H = height, u = upper, l = lower, p = pulmonary, s = systemic, pv = pulmonary
veins, sv = systemic veins, sa = systemic arteries, pa = pulmonary arteries, RA = right
atrium, RV = right ventricle, LA = left atrium, LV = left ventricle).

In the systemic circulation, there are multiple tissues and organs connected in parallel; their
flows add to give the total systemic flow:

Qsa,sv =
∑
j

Qsj (15)

Note that by equation (15),

Q = Qu
s +Ql

s (16)

Then, we are able consider the blood between the upper and lower compartment of
the systemic circulation as a fluid-filled column and use Bernouli’s equation to obtain the
following relationship:

P l
sa − P u

sa = ρg(Hu −H l) (17)

where, ρ is the density of blood, g is the gravitational acceleration, and Hu and H l denote
upper and lower heights respectively such that

Hu > 0 > H l. (18)

2.3 Partial Venous Collapse

The heart chambers are lumped into one chamber which we choose to be the right atrium.
Depending on right atrial pressure, PRA, we get the following equations

P u
sv = max{0, PRA − ρgHu} (19)

P l
sv = max{(0, PRA)− ρgH l} (20)
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which give rise to three cases.
Case I:

Pthorax < PRA < 0 (21)

P u
sv = 0 (22)

P l
sv = ρg(−H l) (23)

Case II:

0 <PRA < ρg(−H l) (24)

P u
sv = 0 (25)

P l
sv = PRA + ρg(−H l) (26)

Case III:

ρg(Hu) < PRA (27)

P u
sv = PRA − ρg(−Hu) (28)

P l
sv = PRA + ρg(−H l). (29)

Cases I and II observe a localized partial collapse of the systemic veins, just upstream of
their entry into the thoracic compartment. This is referred to as partial venous collapse.
Case III exhibits no partial collapse of the systemic veins. We now have a linear system
of equations that we can solve analytically for each of the three cases. In the uncontrolled
case, our parameters are the total reserve volume, compliance and resistance values of the
arteries and veins, stroke volume, the upper and lower compartment heights, total volume,
gravitational acceleration, blood density, and heart rate. The need for feedback control can
be clearly seen by considering the example of what occurs during exercise. When we begin
to exercise, the blood vessels in our systemic circulation dilate to increase blood flow to the
tissues that are being depleted of oxygen. This dilation results in the radius of the vessel
increasing and thereby reducing the systemic resistance. Clearly, by equations (13) and (14),
this will cause the systemic arterial pressure to drop. Baroreceptors detect this drop in blood
pressure from a set value and adjust the heart rate accordingly to improve cardiac output.
Because heart rate is a fixed parameter in the uncontrolled model, and the cardiac output
is directly proportion to heart rate, Q will not increase sufficiently.

2.4 Idealized Controller

In this subsection, we attempt to remedy the issues of the uncontrolled circulation by con-
sidering F and V 0

total to be unknown variables rather than parameters, so that Q can be
proportionally adjusted during dynamic changes to the circulation. Since total volume is
still fixed, the reduction of total reserve volume serves to increase the volume of distributed
blood between the chambers, thereby increasing flow. We assume that the autonomic ner-
vous system is able to make adjustments to heart rate and total reserve volume to maintain
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specific target values of P u
sa and also the pressure difference that stretches the wall of the

right atrium, ∆PRA. Thus, we have new parameters (P u
sa)

∗ and (∆PRA)
∗ defined as

P u
sa = (P u

sa)
∗ (30)

PRA − Pthorax = (∆PRA)
∗ (31)

For the model to be valid, V 0
total must be nonnegative as a working system always has some

venous reserve volume. We will derive analytical solutions for F and V 0
total for each case

separately, with the following procedure:

1. Identify the case defining condition for validity on Pthorax.

2. Use the upper and lower systemic venous pressures and the control equations (30) and
(31) to solve for the lower systemic arterial pressure.

3. Solve for the upper and lower systemic flows with the appropriate systemic pressure
values to obtain an expression for Q.

4. Use Q from the previous step to obtain F as a function of parameters.

5. Solve for pulmonary pressures knowing Q and write total reserve volume V 0
total as a

function of parameters.

2.4.1 Case I

Since PRA = Pthorax + (∆PRA)
∗ by equation (31), the condition for validity of case I can be

stated as follows:

Pthorax ≤ − (∆PRA)
∗ (32)

Substituting the controlled value for P u
sa into equation (17) yields

P l
sa = (P u

sa)
∗ + ρg(Hu −H l) (33)

Using equations (13), (14) and (33), the systemic pressures specify the flows

Qu
s =

1

Ru
s

(P u
sa − P u

sv) (34)

=
1

Ru
s

(P u
sa)

∗ (35)

Ql
s =

1

Rl
s

(
P l
sa − P l

sv

)
(36)

=
1

Rl
s

((P u
sa)

∗ + ρgHu) (37)

With both upper and lower systemic flows known, the cardiac output is simply their sum by
equation (16):

Q =

(
1

Ru
s

+
1

Rl
s

)
(P u

sa)
∗ +

ρgHu

Rl
s

(38)
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Then, by using equation (11) and substituting (31) and (38), an equation for heart rate as
a function of parameters can be obtained:

F =
Q

CRVD (PRA − Pthorax )
(39)

=

(
1
Ru

s
+ 1

Rl
s

)
(P u

sa)
∗ + ρgHu

Rl
s

CRVD (∆PRA)
∗ (40)

The pulmonary pressures can be solved for by setting equations (8) and (9) equal to each
other and substituting equation (31):

CLVD(Ppv − Pthorax) = CRVD (∆PRA)
∗ (41)

Ppv − Pthorax =
CRVD

CLVD

(∆PRA)
∗ (42)

We know from equation (12) that Ppa − Ppv = QRp and adding this quantity to both sides
of (42) results in:

Ppa − Pthorax =
CRVD

CLVD

(∆PRA)
∗ +QRp (43)

Using equation (4) and our case I assumptions, we also arrive at an expression for total
reserve volume as a function of parameters:

V 0
total = Vtotal − Cp

CRVD

CLVD

(∆PRA)
∗ − (TpGs + Csa) (P

u
sa)

∗ −
(
Tp

Rl
s

+ C l
sa

)
ρgHu − C l

sρg −H l)

(44)

where the arterial compliance is the sum of the compartment compliances:

Csa = Cu
sa + C l

sa, (45)

the conductance term Gs is the sum of the upper and lower conductances (reciprocal resis-
tances):

Gs = Gu
s +Gl

s =
1

Ru
s

+
1

Rl
s

, (46)

the pulmonary time constant Tp is

Tp = CpaRp (47)

and the pulmonary compliance, Cp is

Cp = Cpa + Cpv. (48)
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2.4.2 Case II

Similarly, case II is defined by the following inequality:

0 < PRA < ρgHu (49)

which can be rewritten as

− (∆PRA)
∗ < Pthorax < ρgHu. (50)

by equation (31). Since PRA < ρgHu, there is partial collapse of the upper systemic veins
(not extending all the way down to the heart). Thus, similar to case I, we have that P u

sv = 0,
but because right atrial pressure is nonnegative, there is no systemic venous collapse below
the heart, yielding the following:

P l
sv = ρg(−H l) + PRA (51)

= ρg(−H l) + Pthorax + (∆PRA)
∗ (52)

The upper and lower systemic arterial pressures are the same as in case I, given by equations
(30) and (33), and the upper and lower systemic flows follow:

Qu
s =

1

Ru
s

(
(P u

sa)
∗ + ρg(Hu −H l)

)
(53)

Ql
s =

1

Rl
s

(
(P u

sa)
∗ + ρg

(
Hu −H l)

)
− ρg(−H l)− Pthorax − (∆PRA)

∗) (54)

=
1

Rl
s

((P u
sa)

∗ + ρgHu − Pthorax − (∆PRA)
∗) (55)

Adding the upper and lower systemic flows together yields the cardiac output:

Q =

(
1

Ru
s

+
1

Ru
s

)
(P u

sa)
∗ +

1

Rl
s

(ρgHu − Pthorax − (∆PRA)
∗) (56)

which in turn allows us to solve for heart rate by equation (31) and (56) into (11):

F =

(
1
Ru

s
+ 1

Ru
s

)
(P u

sa)
∗ + 1

Rl
s
(ρgHu − Pthorax − (∆PRA)

∗)

CRVD

(∆PRA)
∗ (57)

The pulmonary pressures can be solved by setting equations (8) and (9) equal to each other
after solving for pressure difference:

CLVD(Ppv − Pthorax) = CRVD (∆PRA)
∗ (58)

Ppv − Pthorax =
CRVD

CLVD

(∆PRA)
∗ (59)

We know from equation (12) that Ppa − Ppv = QRp and adding this quantity to both sides
results in:

Ppa − Pthorax =
CRVD

CLVD

(∆PRA)
∗ +QRp (60)
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=
CRVD

CLVD

+Rp

((
1

Ru
s

+
1

Ru
s

)
(P u

sa)
∗ +

1

Rl
s

(ρgHu − Pthorax − (∆PRA)
∗)

)
(61)

Following the same procedure from case I, we can solve for V 0
total in terms of parameters

using equation (4) and our case II assumptions:

V 0
total = Vtotal − Cp

CRVD

CLVD

(∆PRA)
∗ − (TpGs + Csa) (P

u
sa)

∗ − (TpG
l
s

+C l
sa)ρgH

u − C l
sρg(−H l)− (C l

sv − TpGs)(Pthorax + (∆PRA)
∗)

(62)

2.4.3 Case III

Repeating the procedure from the previous two cases, we can derive analytical solutions
for heart rate and total reserve volume in case III where there is no venous collapse. The
defining inequality for this case is

ρg(Hu) < PRA = Pthorax + (∆PRA)
∗ (63)

which subsequently gives the condition for validity on Pthorax:

ρgHu − (∆PRA)
∗ ≤ Pthorax (64)

The upper and lower systemic venous pressures are defined as:

P u
sv = PRA − ρg(−Hu) = Pthorax + (∆PRA)

∗ − ρg(−Hu) (65)

P l
sv = PRA + ρg(−H l) = Pthorax + (∆PRA)

∗ + ρg(−H l) (66)

The upper and lower systemic arterial pressures are the same as the other two cases as given
by given by equations (30) and (33) and combining them with equations (13) and (14) result
in:

Qu
s =

1

Ru
s

((P u
sa)

∗ − (Pthorax + (∆PRA)
∗ − ρgHu))

=
1

Rl
s

((P u
sa)

∗ + ρgHu − (Pthorax)− (∆PRA)
∗)

(67)

Ql
s =

1

Rl
s

(
(P u

sa)
∗ + ρg(Hu −H l))− (Pthorax + (∆PRA)

∗ + ρg(−H l)
)
)

=
1

Rl
s

((P u
sa)

∗ + ρgHu − (Pthorax)− (∆PRA)
∗)

(68)

Since the upper and lower pressure differences are the same, the sum of the upper and lower
systemic flows results in the following equation for cardiac output:

Q =

(
1

Ru
s

+
1

Rl
s

)
((P u

sa)
∗ + ρgHu − (Pthorax)− (∆PRA)

∗) (69)
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Then, heart rate is given in the same way by rearranging equation (11) and plugging in Q
from equation (69):

F =

(
1
Ru

s
+ 1

Rl
s

)
((P u

sa)
∗ + ρgHu − (Pthorax)− (∆PRA)

∗)

CRVD (∆PRA)
∗ (70)

Then, we use the pulmonary pressures from (59) and (60) and plug in our case III value for
Q from equation (69) into the latter:

Ppa − Pthorax =
CRVD

CLVD

(∆PRA)
∗ +

(
1

Ru
s

+
1

Rl
s

)
((P u

sa)
∗ + ρgHu − (Pthorax)− (∆PRA)

∗)Rp

(71)

Finally, we can write the total reserve volume for case III with the following familiar expres-
sion from equation (4):

V 0
total = Vtotal − Cp

CRVD

CLVD

(∆PRA)
∗ − (TpGs + Csa) (P

u
sa)

∗ − (TpG
l
s+

C l
sa − Cu

sv)ρgH
u − C l

sρg(−H l)− (C l
sv − TpGs)(Pthorax + (∆PRA)

∗)

(72)

Note that when the equality

Pthorax + (∆PRA)
∗ = ρgHu. (73)

holds, we are in the borderline between case II and III. Setting equations (57) and (70) equal
gives:

F =
Gs(P

u
sa)

∗

CRVD(∆PRA)∗
. (74)

Setting the total reserve volume equations for these two cases, (62) and (72), equal to each
other, it is clear that they only differ with the terms ρgHu and Pthorax + (∆PRA)

∗. Thus,
heart rate and total reserve volume are continuous functions in the transition between case
II and III.
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