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Abstract

This paper describes a computer model for a surgical intervention called a fenes-
tration, which is used to improve the hemodynamics of the Fontan circulation. The
fenestration is a shunt between the systemic and pulmonary veins that increases cardiac
output at the expense of a decrease in the arterial oxygen saturation. The compartmen-
tal computer model used in this paper simulates both blood flow and oxygen transport.
This model is used to demonstrate that an optimal fenestration size exists, which max-
imizes oxygen delivery to the systemic tissues. Numerical experiments are performed
to identify the optimal fenestration cross-sectional area in an effort to maximize oxygen
delivery for a given set of parameters by balancing the gain in cardiac output with the
loss of oxygen content in the systemic tissues.

1 Introduction

Hypoplastic left heart syndrome (HLHS) is a rare congenital heart defect in which the left
heart is severely underdeveloped. It is usually accompanied by stenosis or atresia of the
mitral valve. Patients with this condition require complex medical and surgical interventions
to ensure survival. The typical course of treatment is a sequence of surgeries during the first
several years of life, ending with a procedure that establishes an abnormal physiology known
as the Fontan circulation. This physiology was conceived in 1971 and is characterized by the
systemic organs and lungs in series, as in a normal circulation, and passive blood flow to the
lungs [1]. The Fontan circulation is achieved by surgically placing the right ventricle upstream
from the systemic organs and connecting the vena cavas directly to the pulmonary artery.
Refer to Figure (2) for a schematic of the Fontan circulation as well as a normal circulation
in Figure (1) for comparison. There are several variations of the Fontan circulation that are
either intra- or extra-cardiac, depending on the type of connection established between the
systemic veins and pulmonary artery. The models considered in this work apply to either
case. This Fontan “connection” directs blood directly from the systemic veins to the lungs
for re-oxygenation, completely bypassing the heart.
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Figure 1: Schematic of the standard postnatal cardiovascular circulation. Oxygenated blood
is shown in red and deoxygenated blood is shown in blue. The atrial chambers in this model
are grouped with the chambers that precede the respective ventricles.

Figure 2: A schematic of the standard Fontan circulation [8] and fenestrated Fontan circu-
lation with a systemic-to-pulmonary shunt. Blue represents deoxygenated blood, red repre-
sents oxygenated blood and purple represents partial saturation of oxygen.

Fontan patients experience many complications, like protein-losing enteropathy [6]. These
issues might be caused by chronically low cardiac output as a result of high vascular resistance
from the serialized systemic organs and lungs. Another possible cause might be weaker
contractile properties of the right ventricle [2]. Cardiac output in a Fontan circulation can
be increased by introducing a connection between the systemic veins and the pulmonary
veins known as a fenestration. While this connection typically increases cardiac output, it
does so at the expense of oxygen delivered to the systemic tissues. Blood flowing through
the fenestration, which bypasses the lungs, is not re-oxygenated. This leads to a decrease
in the oxygen saturation in the systemic tissues. This paper is concerned with modeling
the effects of a fenestration. Refer to Figure (2). The clinical function of a fenestration is
to increase cardiac output and decrease pulmonary arterial pressure [3], however, since a
fraction of the oxygen-poor blood is being directed away from the lungs, the overall oxygen
content in the blood is decreased. In this paper, we use a pulsatile mathematical model of
the fenestrated Fontan physiology to identify the fenestration which balances the decrease
in systemic oxygen saturation with the increase in cardiac output.
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2 Mathematical Models

Our models for the Fontan circulation are compartmental in nature and contain three main
parts: pulsatile blood flow, oxygen transport, and a nonlinear fluid-mechanical resistance to
describe the fenestration. The derivation of the pulsatile blood flow model is presented in
the first subsection. This is followed by a description of the oxygen transport model. The
final subsection details how the size of the fenestration is incorporated into the blood flow
and oxygen transport models.

2.1 Pulsatile Blood Flow Model

The pulsatile blood flow model takes into account the temporal variations of pressure, flow,
and volume by incorporating a time-varying compliance for the heart chambers over a cardiac
cycle. Derivations presented herein follow the approach from Hoppenstadt and Peskin, with
modifications to account for the Fontan physiology. [4].

The compartmental blood flow models used in this paper contain compliance chambers
and resistor elements. The major vessel networks, i.e. the systemic arteries (sa), systemic
veins (sv), pulmonary arteries (pa), and pulmonary veins (pv), are taken to be compliance
chambers that obey the following relation between compliance C, pressure P , and volume
V :

V = Vd + CP. (1)

The dead volume Vd is the residual volume of the compliance chamber at zero pressure.
The heart chambers obey equation (1), but the compliance is taken to be a time-dependent
function that varies between minimum Csystole and maximum Cdiastole.

The resistor elements in our models determine the connections, and hence the flows,
between compliance chambers. For example, flow between chamber i and chamber j, denoted
Qij, is determined by the respective chamber pressures Pi and Pj and the resistance R of
the resistor element via Ohm’s law:

Qij = R−1(Pi − Pj). (2)

Equations (1) and (2) are the building blocks for the hemodynamics in the pulsatile model.
The heart pumps blood into the arteries in discrete surges during contractions, causing

the blood pressure to rise and fall periodically. Therefore, in this model, the pressures, flows,
and volumes are taken to be time-dependent. Consider a compliance vessel with values for
inflow Q1(t) and outflow Q2(t). If the vessel is not in a steady state, then these two values
are unequal and the volume of the vessel is no longer a constant. Let the volume of a vessel
be regarded as V (t) at a time t. We say the rate of change of volume with respect to time
is the difference between the inflow and outflow of the vessel:

dV

dt
= Q1 −Q2. (3)

The compliance equation (1) can be used to relate volume as so:

V (t) = CP (t) + Vd. (4)
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Deriving this equation with respect to time yields the equality:

C
dP

dt
= Q1 −Q2, (5)

a convenient differential equation that accounts for pressure as a function of time in a com-
pliance chamber with unsteady flow.

Consider an arbitrary collection of N compliance chambers. Between any pair i, j ∈
{1, 2, ..., N} we assume there are two resistance vessels that run between them equipped
with valves. Connections between chambers that are not present in the circulation can
be ignored by making the resistance between them infinite in both direction. If there is a
connection between two chambers with no valve, this can be achieved in the model by setting
two resistances between them in both directions to be equal and finite. Finally, if there is a
connection between two chambers with a valve in place to prevent back-flow in a particular
direction, we set the resistance in one direction to be infinite and the resistance in the
direction of flow to be a small finite value. By choosing the right combination of resistances,
any circulation set up may be achieved, including the fenestrated Fontan circulation.

The equation for the conservation of volume for each compliance chamber follows the
same form as before where the change in volume with respect to time is the difference
between the inflow and the outflow:

dVi
dt

=
N∑
j=1

(Qji −Qij), i = 1, ..., N. (6)

where Vi is the volume of the ith compliance chamber and Qij is the flow from chamber i to
chamber j.

The compliance relation is given by:

Vi = Vd,i + CiPi (7)

where Ci and Pi are the compliance and pressure of the ith compliance chamber respectively,
and Vd, i is the dead volume or volume at Pi = 0 of the ith compliance chamber. For arteries
and veins the compliance is constant and for chambers of the heart it is a function of time.
Specifically, we take the right ventricular compliance CRV to be a given periodic function of
time with period T and express it in a way that considers time t = 0 to be at end-diastole
and thus at a maximum compliance, CRVD, and time t = T to be at end-systole and thus at
a minimum compliance CRVS. We introduce the quality of the ventricle called elastance, E,
which is the reciprocal of compliance, and specify ventricular qualities in terms of maximum
and minimum elastance [7]:

Emax = 1/CRVS (8)

Emin = 1/CRVD (9)

The time dependent equation for compliance in the right ventricle in terms of elastance is
given by

CRV(t) =
1

ERV(t)
(10)

ERV(t) = k
g1

1 + g1
· 1

1 + g2
+ Emin (11)
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where

g1 =

(
t

τ1

)m1

, g2 =

(
t

τ2

)m2

(12)

and k is a scaling factor that guarantees that max(E) = Emax, as follows:

k =
Emax − Emin

max
[(

g1
1+g1

)
,
(

1
1+g2

)] (13)

In the above expressions, also known as the two-Hill function, the repeating qualitative
characteristics of periodic contraction/stiffening and relaxation of the ventricular muscles is
quantitatively incorporated into the model, with the systolic and diastolic time constants τ1
and τ2 inversely controlling the time translation between these extrema and the systolic and
diastolic rate constant m1 and m2 controlling the slope for these transitions.

Figure 3: The compliance and elastance reciprocal as a function of time are shown here for
5 cardiac cycles. The peaks (troughs) of the elastance curve and the troughs (peaks) of the
compliance curve represent the systolic (diastolic) phase.

The pressure-flow relation for each component is given by entry i of N × 1 pressure P
and compliance C arrays and entry (i, j) of an N×N conductance matrix, G, equipped with
a valve indicator function incorporated into Ohm’s Law:

Qij =
1ij
Rij

(Pi − Pj) = 1ijGij(Pi − Pj), i, j = 1, ..., N, (14)

where we define an N ×N indicator matrix with entries in position ij by:

1ij =

{
0 Pi ≤ Pj
1 Pi > Pj

(15)
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and the notation Gij = 1/Rij is introduced so we may refer to an infinite resistance as zero
conductance. Combining volume conservation equations with the compliance relations gives:

d

dt
(CiPi) =

N∑
j=1

(1jiGji(Pj − Pi)− 1ijGij(Pi − Pj) (16)

=
N∑
j=1

(1ijGij + 1jiGji)(Pj − Pi)

In our model, the systemic organs and pulmonary circulation are assumed to be resistance
elements, with resistances Rs and Rp respectively. The fenestration and Fontan connection
are also assumed to be resistance elements with resistance RFe and RFo respectively.

2.2 Oxygen Model

An important consideration for congenital heart defects such as hypo-plastic left heart syn-
drome and other single ventricular circulations is the oxygen content, since the normal distri-
bution of oxygen concentration in the blood across the compliance chambers is interrupted
by the modifications, and in our case, even further with the introduction of the fenestration.
The shunt we incorporate into our model connects the systemic vein compliance chamber to
the pulmonary vein compliance chamber. What this means is that some of the blood volume
that was originally meant to flow to the lungs to receive oxygen is now bypassing the lungs
and is not receiving oxygen, resulting in an overall lower oxygen concentration. We compute
this by the following equation:

d

dt
(Vi[O2]i) =

N∑
j,j 6=i
Qji>0

(Qji[O2]j)−
N∑

j,j 6=i
Qij>0

(Qij[O2]i)−Mij (17)

Here we refer to [O2]i as the volumetric oxygen concentration in the ith compliance chamber,
defined as the volume (in liters) of oxygen per liter of blood, so it is a unit-less quantity. The
first summation represents inflow, accounting for oxygen carried by blood flow from chamber
j into chamber i and the second summation is the outflow, which accounts for oxygen that
is carried out of chamber i by the blood into chamber j. Mij is called metabolism, the rate
of oxygen consumption in the vessel leading from chamber i to j. We consider the lungs to
be an oxygen source and the organs to be an oxygen sink, and therefore these are the only
places where the metabolism function is nonzero. We give Msa,sv a positive constant value
based on clinical data to model the consumption of oxygen by the organs, and we give Mpa,pv

a negative value since the metabolism is intrinsically defined as oxygen consumption and the
lungs are delivering oxygen to the blood. In particular, the expression is as follows:

Mpa,pv = −(Qp(γ − [O2]pa) (18)

where γ > 0 represents the volumetric oxygen concentration of blood when it is fully satu-
rated and Qp is the pulmonary flow, Qpa,pv, or the flow through the lungs.
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2.3 Geometric Considerations for Fenestration

One of the more useful properties of the fenestration that we can compute is its size. Since
the fenestration resistance/conductance is a parameter in our model, we can relate this to
the dimensions of the conduit with Gorlin’s equation. Consider the systemic veins and the
pulmonary veins as two chambers separated by a hole with a cross-sectional area A0. We
make the assumption that the blood flow’s velocity is much greater than the velocity of the
blood inside the chambers already and thus we regard the blood in the chambers to be at
rest. The flow in the direction of the systemic veins to the pulmonary veins is considered
positive. The equation for the velocity of the fluid through the hole as it relates to flow is
given by:

v = Q/A0 (19)

where Q = Qsv,pv is the flow through the fenestration.
Let P0 be the pressure within the fenestration. Then by Bernouli’s equation for the

chamber upstream of the shunt and up to it:

P0 = Psv −
1

2
ρv2 = Psv − Psv (20)

For the chamber downstream of the hole, the pressure in this region is contant such that
Psv = P0 and Bernouli’s equation does not apply due to the turbulence of the fluid resulting
in dissipation of energy, since Bernouli’s principle is derived from conservation of energy. We
can use the property of the downstream pressure to state the following:

Psv − Ppv =
ρ

2A2
0

Q2, Q > 0 (21)

Ppv − Psv =
ρ

2A2
0

Q2, Q < 0 (22)

Combining the equations above yields:

Psv − Ppv =
ρ

2A0

|Q|QPsv − Ppv

Q
= RFe (23)

We now have an equation for resistance in terms of cross sectional area of the fenestration.

RFe =
ρ

2A0

|Q| (24)

Of course, since blood is not an ideal fluid, it has some viscosity that contributes to resistance
denoted as Rvisc:

RFe = Rvisc +
ρ

2A0

|Q| (25)

Since the resistance is the reciprocal of the conductance, we can take the reciprcal of both
sides to arrive at an equation for conductance in terms of Q and A0:

Gsv,pv = GFe =
1

Rvisc + ρ
2A0
|Q|

(26)
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3 Numerical Methods

In this section, we show how the equations for the heart model are numerically solved. All
the implementations for these simulations are carried out in MATLAB.

3.1 Pulsatile Bloodflow Model

A numerical method for (16) can be obtained by replacing the time derivative with a back-
ward difference quotient, which is known as Backward Euler Method. Since this is a system
of N differential equations with N unknowns P1, ..., PN , the backward Euler method can be
used to solve:

Ci(t)Pi(t)− Ci(t−∆t)Pi(t−∆t)

∆t
(27)

=
N∑
j=1

(1ij(t)Gij(t) + 1ji(t)Gji(t))(Pj − Pi) (28)

While the valve states 1ij(t) are unknown, we regard them as functions of the pressures and
consequentially make the assumption that for now they are known values. This allows us to
express the equation above as a linear system which we rewrite in standard form:

N∑
j=1

Aij(t)Pj(t) = Ci(t−∆t)Pi(t−∆t), i = 1, ..., N (29)

where

Aij(t) = −∆t(1ij(t)Gij(t) + 1ji(t)Gji(t)), i 6= j (30)

Aii(t) = Ci(t)−
∑
j:j 6=i

Aij(t). (31)

Once we solve for the pressures, we can plug these into Ohm’s law (2) to get the flows.

3.2 Oxygen Model

To solve the ODE for the oxygen concentration in each chamber (17), we replace the time
derivative with a forward difference quotient to get the explicit numerical integration scheme
known as Forward Euler’s method:

Vi[O2]i(t)− Vi[O2]i(t−∆t)

∆t
= Qji[O2]j(t−∆t)−Qij[O2](t−∆t)−Mij(t−∆t) (32)

It is simple to solve for Vi[O2]i(t) which we can divide the volume out from to obtain the
oxygen concentration at any given time in the simulation.
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3.3 Gorlin Equation and a Fixed Point Iteration

When the fenestration is closed (A0 = 0), the above formulations will suffice. However, if
we are to consider an open fenestration (A0 > 0), we must use the Gorlin equation (26) to
solve for the fenestration resistance. Unlike the other resistor elements in the model, the
fenestration resistor is a nonlinear element that depends on the flow between chambers it
connects. Because of this dependence of the resistance (and conductance) on the flow, we
need to ensure that at each timestep, we are using the appropriate flow value, Qsv,pv(t),
for that time to compute GFe = 1

RFe
instead of time-lagging with the previous flow value

Qsv,pv(t−∆t). To do this, we implement a fixed-point iteration on Qsv,pv(t−∆t) at each time
step to generate a sequence {Qsv,pv(t−∆t)}k, k = 0, 1, 2, ... which converges to Qsv,pv(t−∆t),
given by

φ(Qsv,pv(t−∆t)k) = Qsv,pv(t−∆t)k+1 (33)

where φ is the map that takes a fenestration flow value and uses it to solve for the respective
conductance and then in turn uses that updated conductance value to get the flow value
that becomes the next iterate in the sequence (33). Just as {Qsv,pv(t−∆t)}k, k = 0, 1, 2, ...
converges to Qsv,pv(t − ∆t), a similar sequence {GFe(t − ∆t)}k, k = 0, 1, 2, ... is generated
and converges to GFe(t). Using the fixed-point iteration on these flows avoids high frequency
oscillations and numerical instability in the timecourses.

4 Results

In the following simulations, our model runs for roughly 8 minutes which equates to about
500 cardiac cycles. This ensures that both the hemodynamics and the oxygen-related values
reach a periodic steady-state.

4.1 Closed Fenestration: Standard Fontan Circulation

In this section we consider the results of the simulation prior to the introduction of a fen-
estration.The values for the various parameters we used in this model are shown here and
have been calibrated to be consistent with clinical data found in [5].

Figure 4: Zero-dimensional bloodflow circuit diagram of the standard Fontan circulation.
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4.1.1 Parameters and Model Calibration

Parameters Resistance (R) Dead Volume (Vd) Compliance (C)
Units mmHg/(L/min) L L/mmHg
S 20.7807 - -
P 0.5517 - -
Ao 0.01 - -
Tr 0.01 - -
Fo 0.01 - -
SA - 0.705128 7.333e-4
PA - 0.9303 0.00412
SV - 2.86885 0.0990
PV - 0.147541 0.01

Table 1: Parameters for the circulation model. Abbreviations: S, systemic organs; P, lungs;
Ao, aortic valve; Tr, tricuspid valve; Fo, Fontan connection; SA, systemic arteries; PA,
pulmonary arteries; SV, systemic veins; PV, pulmonary veins.

Parameters Symbol Units Right Ventricle
Minimal elastance Emin mmHg/L 79.518
Maximal elastance Emax mmHg/L 5232.0675
Contraction exponent m1 - 1.32
Relaxation exponent m2 - 27.4
Systolic time constant τ1 minutes 0.269*T
Diastolic time constant τ2 minutes 0.452*T
Dead volume Vd L 0.028
Period of heartbeat T minutes 0.016

Table 2: Parameters for the time varying right ventricular compliance in the heart model.

The parameters shown above were calibrated to clinical data reported in [5]. The standard
Fontan model schematic shown in figure (4) shows that there are two valves in this model
represented by diodes. The diode between the chambers labeled pulmonary veins (pv) and
the right ventricle (RV) is the tricuspid valve. Note that this is due to the fact that the
pulmonary veins are coupled with the right atrium as there is negligible resistance to blood
flow between them. The diode between the right ventricle (RV) and systemic arteries (sa)
is the aortic valve.
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variable our model clinical data reported in [5]
cardiac index (L*minˆ-1*mˆ-2) 2.685039 2.9, 2.1
stroke volume index (mL mˆ-2) 42.97555 39,40
RV end diastolic volume index (mL mˆ-2) 75.90377 72, 76
RV end systolic volume index (mL mˆ-2) 32.92821 33, 36
RV end systolic pressure (mmHg) 118.0558 124*
RV end diastolic pressure (mmHg) 6.827076 6.6
vena cava mean pressure (mmHg) 9.348427 8
pulse pressure (mmHg) 56.39481 54
systemic artery systolic pressure (mmHg) 118.0559 124
systemic artery diastolic pressure (mmHg) 61.66108 70
systemic artery mean pressure (mmHg) 93.04392 88
pul artery mean pressure (mmHg) 9.308135 9

Table 3: Calibrated variables from our prefenestration model compared to those extracted
from clinical data. The normalization that occurs in the first four variables assumes a body
surface area of 1.5m2. *While clinical data is not available for RV end systolic pressure, due
to the configuration of the circulation our model makes the assumption that the value should
be the same as the systemic artery systolic pressure.

4.1.2 Closed Fenestration Hemodynamics

Here we show the hemodynamic results of the closed fenestration model and justify that
blood flow has reached a periodic steady-state.

Figure 5: Flow through the organs (systemic) and lungs (pulmonary) for the last 5 cardiac
cycles of the simulation.
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Figure 6: In the first panel, the pressures of the right ventricle, system arteries and pulmonary
arteries are shown and in the second panel, the flow through the tricuspid and aortic valves
are shown both for the last 5 cardiac cycles of the simulation.

The simulation results in figure 6 demonstrates the connectivity of the Fontan circulation.
The right ventricle and the systemic arteries feel the same maximum pressures at the same
time because they are conjoined in this physiology. The tricuspid and aortic valves are
inversely reaching their maximum and minimum flow values because the tricuspid valve
opens to allow the right ventricle to fill. Once the filling process is complete, the tricuspid
valve closes and the aortic valve opens in preparation for the ventricle to contract and eject
its contents into the systemic arterial tree.
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Figure 7: The pressure volume loop for the right ventricle in the last cardiac cycle of the
simulation. The points representing the clinical data values of systole and diastole in [5] are
shown in green and purple respectively. The intercept of both the yellow and red line is VRVd

and the slopes are Emax and Emin respectively.

Figure 8: The first panel shows oxygen volume in each respective chamber and the second
panel shows the volumetric oxygen concentration, measured as liters of oxygen per liter of
blood, in each chamber for five cardiac cycles at the end of the simulation.

4.2 Fenestrated Fontan Circulation

In this section we observe the hemodynamical changes that result from the addition of
different sized fenestrations.
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Figure 9: Pressure waveforms over five cardiac cycles for three different fenestration sizes.

Figure 10: Systemic and pulmonary flows for varying fenestration sizes.
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Figure 11: Flow through fenestrations of varying cross-sectional areas in the last five cardiac
cycles of the simulation.

Figure 12: Right ventricular pressure and volume plotted for varying fenestration cross-
sectional areas.
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4.3 Optimal fenestration: maximizing oxygen delivery

We define oxygen concentration to be volumetric, in the sense that [O2] is the liters of oxygen
per liter of blood and cardiac output Qs is defined as liters of blood delivered to the systemic
circulation per minute. Thus, Q[O2] is the liters of oxygen delivered to the organs per minute
and we call this quantity ”oxygen delivery”.

(a) cardiac output (b) oxygen concentration

Figure 13: Plots that show the change in cardiac output and systemic arterial oxygen con-
centration as the fenestration cross sectional area increases.

Figure 14: Oxygen delivery (Q[O2]) as a function of fenestration size (A0) with a clear
maximum at A0 = 0.5818cm2
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variable closed fenestration optimal fenestration
cardiac index (L*minˆ-1*mˆ-2) 2.685039 2.979512
stroke volume index (mL mˆ-2) 42.97555 47.68876
RV end diastolic volume index (mL mˆ-2) 75.90377 82.01851
RV end systolic volume index (mL mˆ-2) 32.92821 34.32975
RV end systolic pressure (mmHg) 118.0558 129.8632
RV end diastolic pressure (mmHg) 6.827076 7.556425
vena cava mean pressure (mmHg) 9.348427 9.176109
pulse pressure (mmHg) 56.39481 62.34017
systemic artery systolic pressure (mmHg) 118.0559 129.8023
systemic artery diastolic pressure (mmHg) 61.66108 67.46211
systemic artery mean pressure (mmHg) 93.04392 102.0506
pul artery mean pressure (mmHg) 9.308135 9.149688

Table 4: Calibrated variables from our closed fenestration model compared to those extracted
from the optimally fenestrated circulation. Here, the optimal cross-sectional area for the
fenestration is A0 = 0.005818 cm2. The normalization that occurs in the first four variables
assumes a body surface area of 1.5 m2.

(a) Oxygen delivery curves (b) Benefit of optimal fenestration.

Figure 15: Oxygen delivery curves plotted against fenestration cross-sectional area for vary-
ing pulmonary resistance Rp mmHg/(L/min) values (left). The change in oxygen delivery
between the closed fenestration and the optimal fenestration is shown for multiple pulmonary
resistance values (right).
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5 Discussion

After calibrating the standard Fontan circulation with a closed fenestration to clinical data
extracted from [5], we can clearly observe that the pressures, flows and oxygen volume had
all reached a steady-state by the end of the simulation as seen in figures 5, 6 and 8. The
pressure-volume loop shown in figure 7 is for the last cardiac cycle of the simulation. The
top left corner of the loop indicates the experimental right-ventricular end-systolic pressure
and volume while the bottom right represents the end-diastolic pressure and volume. The
blue and red data points correspond to the clinical data from [5] regarding corresponding
right-ventricular pressures and volumes at end-systole and end-diastole. The minimum and
maximum elastances, Emin and Emax were reasonably computed during model calibration to
fit these clinical PV data points with VRVd as an intercept. In the top panel of figure 8, the
distribution of oxygen volume across all five chambers is shown and it can be seen that a
majority of the circulation’s oxygen resides in the organ bed (systemic arteries and systemic
veins). In the bottom panel of figure 8 we see the volumetric oxygen concentration after
deoxygentation of the blood the the organs (systemic veins and pulmonary arteries) and just
after oxygenation from the lungs (pulmonary veins, right ventricle, systemic arteries). These
plots justify that the oxygen concentrations that the model fluctuates between as a result of
the oxygen source and sink have reached a periodic steady-state at this point in time of the
simulation.

Now that we have justified that the oxygen content and the hemodynamics of the closed
fenestration model have reached a periodic steady-state and have been calibrated appropri-
ately to clinical data, we can study and compare our results to a model with the fenestration
opened.

The right ventricular and systemic arterial pressures are shown in the top and bottom
panels respectively in figure 9. Also, as expected, opening the fenestration leads to an
increase in the flow through the organ bed and thus cardiac output (see top panel of 10
and 13a). Since the fenestration allows a portion of the blood to be diverted away from the
lungs, increasing its cross-sectional area will lead to a decrease in pulmonary flow (bottom
panel of figure 10) and a decrease in overall blood oxygen concentration (see figure 15b).

The product of cardiac output (or systemic flow) and oxygen concentration is known as
oxygen delivery or the volume of oxygen delivered per minute. Running the simulation for
various fenestration sizes to identify the cross-sectional area that results in the maximum
value for oxygen delivery allows us to find an optimal balance that helps to increase cardiac
output while maintaining as much oxygen concentration as possible. We can visually see this
represented in figure 14 where the oxygen delivery as a function of fenestration size results
in a parabolic, concave down curve with a clear maximum.

The effects of the optimal fenestration on the circulation are quantitatively represented in
table 4 comparing variables of the calibrated closed fenestration simulation to the resulting
variables with the optimal fenestration size.

Since a fenestrations are often given to relieve high pulmonary resistances, we wanted to
see how varying this parameter affected what fenestration size should be chosen. We found in
figure 15a that different pulmonary resistances affect the magnitude of the maximum oxygen
delivery value for varying fenestration sizes. It is also clear from figure 15b that for higher
pulmonary resistances, the optimal fenestration has a greater impact on improving Q[O2].
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6 Conclusion

In this paper, we described a model for the standard Fontan physiology in patients with hypo-
plastic left heart syndrome (HLHS). A clinical procedure that introduces a fenestration from
the systemic veins to the pulmonary veins is done to alleviate some of the difficulties that
these patients face such as low blood pressure and cardiac output. Our experiments explored
a way to optimize the benefits of this fenestration while mitigating some of its adverse effects
like loss of blood oxygen content. We operationalized this by studying the effects that varying
the fenestration size had on oxygen delivery and found that a clear maximum can be achieved.
The optimal fenestration size leads to favorable outcomes regarding cardiac functionality and
maintains sufficient blood oxygen concentration in patients with HLHS.

7 Appendix A: Steady-state analysis of the fenestrated

Fontan circulation

In this section, we derive the steady-state blood flow model. In this case, the compliance of
the heart chamber is taken to be constant in time. The compliance of the heart at the end
of systole is small, and assumed to be zero corresponding to Csystole = 0. The compliance of
the heart chamber at the end of diastole is denoted Cdiastole.

VED = Vd,heart + CdiastolePpv

and at end-systole the ventricle achieves its minimum volume given by

VES = Vd,heart + CsystolePpa

The stroke volume is the volume of blood ejected per beat and is effectively the difference
between the end systole:

Vstroke = VED = VES = CdiastolePpv − CsystolePpa

Taking the heart rate (number of heart beats per minute) to be F , the cardiac output Q
can then be expressed as:

Q = F (Vstroke) = F (CdiastolePpv − CsystolePsa) = FCdiastolePpv = KPpv,

where we have defined a pump coefficient K = FCdiastole. Note that in this model, we are
assuming the heart is really just the single ventricle, and the atrium chamber can be
effectively lumped with the compliance chamber corresponding to the pulmonary veins.
Equations for volumetric flow rate in this model are analogous to Ohm’s Law for electrical
circuits, with cardiac output behaving as current and pressure difference behaving as
voltage difference.

Q = KPpv

Q = R−1s (Psa − Psv)

Q−Q1 = R−1p (Ppa − Ppv)

Q1 = R−1Fe (Psv − Ppv)

Q−Q1 = R−1Fo (Psv − Ppa).
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The last equation deals with the total cavopulmonary connection in an extracardiac
Fontan, and we include the case of both zero and non-zero pressure drops across it. The
steady-state assumption being made here is that volume, pressure, and flow are not
changing with time. Hence, it must be true that for each compliance chamber, the inflow is
equal to the outflow. This is because if the inflow and outflow were unequal, there would
be a nonzero change in volume, and we have assumed that the volume in each compliance
chamber is constant.
One of our interests is in the dependence of cardiac output Q on the resistance of the
fenestration RFe. To solve for Q, we first express the pressures as functions of the flows:

Ppv = K−1Q

Ppa = Rp(Q−Q1) +K−1Q

Psa = QRs +Q1RFe +K−1Q

Psv = RFeQ1 +K−1Q

Psv = RFo(Q−Q1) +Rp(Q−Q1) +K−1Q.

From the two equations for Psv we get the equality:

RFeQ1 = RFo(Q−Q1) +Rp(Q−Q1),

which we can use to express the ratio of fenestration flow to total cardiac output in terms
of the pulmonary, fenestration and Fontan resistances:

Q1

Q
=

Rp +RFo

RFe +Rp +RFo

.

This relationship can be used to rewrite the pressures in terms of the cardiac output:

Ppv = K−1Q

Psv =

(
RFe(Rp +RFo)

RFe +Rp +RFo

+K−1
)
Q

Ppa =

(
RFeRp

RFe +Rp +RFo

+K−1
)
Q

Psa =

(
Rs +

RFe(Rp +RFo)

RFe +Rp +RFo

+K−1
)
Q.

The volume equations for the compliance chambers are:

Vsa = Vd,sa + CsaPsa

Vsv = Vd,sv + CsvPsv

Vpa = Vd,pa + CpaPpa

Vpv = Vd,pv + CpvPpv.

We assume the total blood volume in the heart is constant and equal to V0, so:∑
i

Vi = V0∑
i

CiPi = V0 −
∑
i

Vd, i
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i = {sa, sv, pa, pv}
Next we define three time constants, T1, T2, T3, as follows:

T1 = K−1
∑
i

Ci + CsaRs

T2 = (Csa + Csv + Cpa)Rp

T3 = (Csa + Csv)RFo

Finally, we use the equation for volume conservation to express Q as a function of RFe:

Q =

(
T1 + (T2 + T3)

RFe

RFe +Rp +RFo

)−1
(V0 −

∑
i

Vd, i)

where T1, T2, and T3 are expressions only containing model parameters. This function is
visualized in the left panel of Figure 16. In the right panel we plot pressures in the different
compliance chambers to see if the parameters in our model are calibrated in a reasonable

way.
The cardiac output Q = Q(RFe) as a function of the fenestration resistance is monotone
decreasing, i.e. as RFe increases, the cardiac output decreases. In particular, this formula

shows that an open fenestration corresponding to RFe <∞ will give higher cardiac output
than a closed fenestration corresponding to RFe =∞.

We can also investigate the effect of the fenestration on the systemic venous pressure. To
do this, define the following function of RFe:

γ(RFe) =
RFe

RFe +Rp +RFo

,

which takes values between 0 and 1 for 0 < RFe <∞. We can then express the systemic
venous pressure in terms of γ:

Psv =
(γ(Rp +RFo) +K−1)(V0 −

∑
i Vd,i)

T1 + (T2 + T3)γ
.

Differentiating this equation with respect to γ, we obtain:

dPsv

dγ
=

[(T1 + γ(T2 + T3))(Rp +RFo)− (γ(Rp +RFo) +K−1)(T2 + T3)](V0 −
∑

i Vd,i)

(T1 + γ(T2 + T3))2
.

Cancelling terms gives us:

dPsv

dγ
=

(T1(Rp +RFo)− (T2 + T3)K
−1)(V0 −

∑
i Vd,i)

(T1 + γ(T2 + T3))2
> 0,

which follows since T1(Rp +RFo) > (T2 + T3)K
−1. So, we conclude that opening a

fenestration in this model always leads to a drop in the systemic venous pressure.
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Each compliance chamber has an oxygen concentration [O2], and we are interested in [O2]sa
as a function of the fenestration resistance. We assume the concentration in the pulmonary

veins is given,

[O2]pv = C∗ = 0.2.

Also, we know the concentration in the systemic veins and pulmonary arteries is the same
because of the Fontan connection:

[O2]sv = [O2]pa.

Assume the systemic organs consume oxygen at a rate M . By the Fick principle:

Q[O2]sa −Q[O2]sv = M.

The final equation is conservation of oxygen at the junction where the fenestration
connects to the pulmonary veins:

Q1[O2]sv + (Q−Q1)[O2]pv = Q[O2]sa.

These equations for oxygen can be simplified to express:

[O2]sa = C∗ −
(

1− Q1

Q

)−1
Q1

Q

M

Q
.

Using the relationship between fenestration flow and cardiac output, this formula can be
rewritten as:

[O2]sa = C∗ − M

Q

Rp +RFo

RFe

,

revealing that systemic arterial oxygen delivery, AO2 , can be expressed as a function of the
fenestration resistance in the following way:

AO2 = Q[O2]sa = QC∗ −MRp +RFo

RFe

.

In the formula above, note the cardiac output Q is also a function of RFe as described in
the previous section. When the fenestration is closed, RFe =∞, and we obtain AO2 = QC∗

as expected. Otherwise, the fenstration is open and has some impact on oxygen delivery.
An important question is if there is a choice of RFe for which AO2 is maximized. In Figure

17, we plot AO2 for different values of oxygen consumption M on the left and different
values of the lung resistance Rp on the right. All the figures reach some maximum value of

oxygen delivery.
Assuming a maximum for AO2 exists, we can derive conditions under which

dAO2

dRFe

= 0.
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We have

dAO2

dRFe

= C∗
dQ

dRFe

+M
Rp +RFo

R2
Fe

,

dQ

dRFe

=
(V0 +

∑
i Vd,i)(T2 + T3)(Rp +RFo)

(T1(Rp +RFe +RFo) + (T2 + T3)RFe)2
.

Introducing the notation x = (Rp +RFo)/RFe, we have

dAO2

dRFe

= 0 ⇐⇒ M((x+ 1)T1 + T2 + T3)
2 = C∗(V0 −

∑
i

Vd,i)(T2 + T3).

Solving the quadratic equation, we obtain:

x± =
−T1 − (T2 + T3)±

(
C∗(V0−

∑
i Vd,i)(T2+T3)

M

)1/2
T1

There is only one root which has the chance of being positive, corresponding to a
fenestration resistance R∗Fe:

Rp +RFo

R∗Fe
=
−T1 − (T2 + T3) +

(
C∗(V0−

∑
i Vd,i)(T2+T3)

M

)1/2
T1

,

which we rewrite as

R∗Fe =
T1(Rp +RFo)

−T1 − (T2 + T3) +
(
C∗(V0−

∑
i Vd,i)(T2+T3)

M

)1/2 .
In particular, this fenestration resistance is positive if and only if

C∗(V0 −
∑
i

Vd,i) > M(T2 + T3)

(
T1 + T2 + T3
T2 + T3

)2

.
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7.1 Steady-state results

Figure 16: Cardiac outputQ on the left oxygen concentration as a function of the fenestration
resistance on the right. As RFe →∞, the oxygen concentration approaches 0.2.

Figure 17: Systemic arterial oxygen delivery as a function of the fenestration resistance RFe.
On the left we vary M , the rate of oxygen consumption in the organs, and on the right we
vary Rp, the resistance of the lungs.
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Figure 18: This figure shows the oxygen delivery curves for different values of RFo, resistance
of the Fontan connection.

Figure 19: This figure closely shows that an optimal fenestration resistance can be identified
to maximize oxygen delivery to the systemic circulation in a fenestrated Fontan circulation.
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7.2 Square law fenestration resistance

Our goal in this section is to relate the fenestration resistance to geometric parameters. A
place to start would be to assume that the fenestration is a square law resistor:

Psv − Ppv =
ρ

2

(
Q1

A

)2

,

where A is defined to be the cross sectional area of the fenestration. Using the equations
above we get the following formulas for the systemic venous and pulmonary artery pressures:

Psv =
ρ

2

(
Q1

A

)2

+K−1Q

Ppa = Rp(Q−Q1) +K−1Q.

Given our model assumption that Psv = Ppa, we get a quadratic equation for Q1:

ρ

2

(
Q1

A

)2

= (Q−Q1) ⇐⇒ Q2
1 + βQ1 − βQ = 0,

with β = 2RpA2

ρ
. The only positive root of this equation is

Q1 = Q1(Q) = −β
2

+
1

2

(
β2 + 4βQ

)1/2
.

Using the equation:

CsaPsa + (Csv + Cpa)Psv + CpvPpv = V0,

with Psa−Psv = RsQ, we obtain a nonlinear equation for the cardiac output Q as a function
of the parameters:

CsaRsQ+ (Csa + Csv + Cpa)Psv + CpvK
−1Q = V0

Psv =
ρ

2

(
Q1

A

)2

+K−1Q

Q1 = −β
2

+
1

2

(
β2 + 4βQ

)1/2
.
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